A WEAK VERSION OF PATH-DEPENDENT FUNCTIONAL ITÔ CALCULUS

We introduce a variational theory for processes adapted to the multidimensional Brownian motion filtration that provides a differential structure allowing to describe infinitesimal evolution of Wiener functionals at very small scales. The main novel idea is to compute the “sensitivities” of processe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2018-11, Vol.46 (6), p.3399-3441
Hauptverfasser: Leão, Dorival, Ohashi, Alberto, Simas, Alexandre B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3441
container_issue 6
container_start_page 3399
container_title The Annals of probability
container_volume 46
creator Leão, Dorival
Ohashi, Alberto
Simas, Alexandre B.
description We introduce a variational theory for processes adapted to the multidimensional Brownian motion filtration that provides a differential structure allowing to describe infinitesimal evolution of Wiener functionals at very small scales. The main novel idea is to compute the “sensitivities” of processes, namely derivatives of martingale components and a weak notion of infinitesimal generator, via a finite-dimensional approximation procedure based on controlled inter-arrival times and approximating martingales. The theory comes with convergence results that allow to interpret a large class ofWiener functionals beyond semimartingales as limiting objects of differential forms which can be computed path wisely over finite-dimensional spaces. The theory reveals that solutions of BSDEs are minimizers of energy functionals w.r.t. Brownian motion driving noise.
doi_str_mv 10.1214/17-AOP1250
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1214_17_AOP1250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26529276</jstor_id><sourcerecordid>26529276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-cf596addc049e805d5c0a374dc9b4c48dd9af607c1fef6bb6d7b0b4ac44cc1fb3</originalsourceid><addsrcrecordid>eNo9j81KxDAYRYMoWEc37oWsheiXNM3PMnRaZ7C0xWnVXWmSBhyUkXY2vodv5ItZmcHVhXsPFw5C1xTuKKP8nkpiqpqyBE5QxKhQRGn-eooiAE0JlVqdo4tp2gKAkJJHSBv8kplH_Jw9bdZViasc16ZZkWVWZ-UyKxuct2XazJMp8Lr5-capKdK2aDeX6Cz079NwdcwFavOsSVekqB7WM0QcU3pPXEi06L13wPWgIPGJgz6W3DttuePKe90HAdLRMARhrfDSguW949zNnY0X6Pbw68bdNI1D6D7Ht49-_OoodH_SHZXdUXqGbw7wdtrvxn-SiYRpJkX8C6H4T2o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A WEAK VERSION OF PATH-DEPENDENT FUNCTIONAL ITÔ CALCULUS</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Leão, Dorival ; Ohashi, Alberto ; Simas, Alexandre B.</creator><creatorcontrib>Leão, Dorival ; Ohashi, Alberto ; Simas, Alexandre B.</creatorcontrib><description>We introduce a variational theory for processes adapted to the multidimensional Brownian motion filtration that provides a differential structure allowing to describe infinitesimal evolution of Wiener functionals at very small scales. The main novel idea is to compute the “sensitivities” of processes, namely derivatives of martingale components and a weak notion of infinitesimal generator, via a finite-dimensional approximation procedure based on controlled inter-arrival times and approximating martingales. The theory comes with convergence results that allow to interpret a large class ofWiener functionals beyond semimartingales as limiting objects of differential forms which can be computed path wisely over finite-dimensional spaces. The theory reveals that solutions of BSDEs are minimizers of energy functionals w.r.t. Brownian motion driving noise.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/17-AOP1250</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><ispartof>The Annals of probability, 2018-11, Vol.46 (6), p.3399-3441</ispartof><rights>Institute of Mathematical Statistics, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-cf596addc049e805d5c0a374dc9b4c48dd9af607c1fef6bb6d7b0b4ac44cc1fb3</citedby><cites>FETCH-LOGICAL-c289t-cf596addc049e805d5c0a374dc9b4c48dd9af607c1fef6bb6d7b0b4ac44cc1fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26529276$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26529276$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>Leão, Dorival</creatorcontrib><creatorcontrib>Ohashi, Alberto</creatorcontrib><creatorcontrib>Simas, Alexandre B.</creatorcontrib><title>A WEAK VERSION OF PATH-DEPENDENT FUNCTIONAL ITÔ CALCULUS</title><title>The Annals of probability</title><description>We introduce a variational theory for processes adapted to the multidimensional Brownian motion filtration that provides a differential structure allowing to describe infinitesimal evolution of Wiener functionals at very small scales. The main novel idea is to compute the “sensitivities” of processes, namely derivatives of martingale components and a weak notion of infinitesimal generator, via a finite-dimensional approximation procedure based on controlled inter-arrival times and approximating martingales. The theory comes with convergence results that allow to interpret a large class ofWiener functionals beyond semimartingales as limiting objects of differential forms which can be computed path wisely over finite-dimensional spaces. The theory reveals that solutions of BSDEs are minimizers of energy functionals w.r.t. Brownian motion driving noise.</description><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9j81KxDAYRYMoWEc37oWsheiXNM3PMnRaZ7C0xWnVXWmSBhyUkXY2vodv5ItZmcHVhXsPFw5C1xTuKKP8nkpiqpqyBE5QxKhQRGn-eooiAE0JlVqdo4tp2gKAkJJHSBv8kplH_Jw9bdZViasc16ZZkWVWZ-UyKxuct2XazJMp8Lr5-capKdK2aDeX6Cz079NwdcwFavOsSVekqB7WM0QcU3pPXEi06L13wPWgIPGJgz6W3DttuePKe90HAdLRMARhrfDSguW949zNnY0X6Pbw68bdNI1D6D7Ht49-_OoodH_SHZXdUXqGbw7wdtrvxn-SiYRpJkX8C6H4T2o</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Leão, Dorival</creator><creator>Ohashi, Alberto</creator><creator>Simas, Alexandre B.</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>A WEAK VERSION OF PATH-DEPENDENT FUNCTIONAL ITÔ CALCULUS</title><author>Leão, Dorival ; Ohashi, Alberto ; Simas, Alexandre B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-cf596addc049e805d5c0a374dc9b4c48dd9af607c1fef6bb6d7b0b4ac44cc1fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leão, Dorival</creatorcontrib><creatorcontrib>Ohashi, Alberto</creatorcontrib><creatorcontrib>Simas, Alexandre B.</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leão, Dorival</au><au>Ohashi, Alberto</au><au>Simas, Alexandre B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A WEAK VERSION OF PATH-DEPENDENT FUNCTIONAL ITÔ CALCULUS</atitle><jtitle>The Annals of probability</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>46</volume><issue>6</issue><spage>3399</spage><epage>3441</epage><pages>3399-3441</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>We introduce a variational theory for processes adapted to the multidimensional Brownian motion filtration that provides a differential structure allowing to describe infinitesimal evolution of Wiener functionals at very small scales. The main novel idea is to compute the “sensitivities” of processes, namely derivatives of martingale components and a weak notion of infinitesimal generator, via a finite-dimensional approximation procedure based on controlled inter-arrival times and approximating martingales. The theory comes with convergence results that allow to interpret a large class ofWiener functionals beyond semimartingales as limiting objects of differential forms which can be computed path wisely over finite-dimensional spaces. The theory reveals that solutions of BSDEs are minimizers of energy functionals w.r.t. Brownian motion driving noise.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/17-AOP1250</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2018-11, Vol.46 (6), p.3399-3441
issn 0091-1798
2168-894X
language eng
recordid cdi_crossref_primary_10_1214_17_AOP1250
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
title A WEAK VERSION OF PATH-DEPENDENT FUNCTIONAL ITÔ CALCULUS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20WEAK%20VERSION%20OF%20PATH-DEPENDENT%20FUNCTIONAL%20IT%C3%94%20CALCULUS&rft.jtitle=The%20Annals%20of%20probability&rft.au=Le%C3%A3o,%20Dorival&rft.date=2018-11-01&rft.volume=46&rft.issue=6&rft.spage=3399&rft.epage=3441&rft.pages=3399-3441&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/17-AOP1250&rft_dat=%3Cjstor_cross%3E26529276%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26529276&rfr_iscdi=true