Processing of Anti-Müllerian Hormone Regulates Receptor Activation by a Mechanism Distinct from TGF-β
TGF-β family ligands are translated as prepropeptide precursors and are processed into mature C-terminal dimers that signal by assembling a serine/threonine kinase receptor complex containing type I and II components. Many TGF-β ligands are secreted in a latent form that cannot bind their receptor,...
Gespeichert in:
Veröffentlicht in: | Molecular endocrinology (Baltimore, Md.) Md.), 2010-11, Vol.24 (11), p.2193-2206 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TGF-β family ligands are translated as prepropeptide precursors and are processed into mature C-terminal dimers that signal by assembling a serine/threonine kinase receptor complex containing type I and II components. Many TGF-β ligands are secreted in a latent form that cannot bind their receptor, due to the pro-region remaining associated with the mature ligand in a noncovalent complex after proteolytic cleavage. Here we show that anti-Müllerian hormone (AMH), a TGF-β family ligand involved in reproductive development, must be cleaved to bind its type II receptor (AMHRII), but dissociation of the pro-region from the mature C-terminal dimer is not required for this initial interaction. We provide direct evidence for this interaction by showing that the noncovalent complex binds to a soluble form of AMHRII in an ELISA format and to AMHRII immobilized on Sepharose. Binding of the noncovalent complex to Sepharose-coupled AMHRII induces dissociation of the pro-region from the mature C-terminal dimer, whereas no dissociation occurs after binding to immobilized AMH antibodies. The pro-region cannot be detected after binding of the AMH noncovalent complex to AMHRII expressed on COS cells, indicating that pro-region dissociation may occur as a natural consequence of receptor engagement on cells. Moreover, the mature C-terminal dimer is more active than the noncovalent complex in stimulating Sma- and Mad-related protein activation, suggesting that pro-region dissociation contributes to the assembly of the active receptor complex. AMH thus exemplifies a new mechanism for receptor engagement in which interaction with the type II receptor promotes pro-region dissociation to generate mature ligand.
The mature domain of AMH can bind to the type II receptor, AMHRII, while still associated with its pro-region. Binding to AMHRII induces dissociation of the pro-region. |
---|---|
ISSN: | 0888-8809 1944-9917 |
DOI: | 10.1210/me.2010-0273 |