Non-perturbative non-Gaussianity and primordial black holes
We present a non-perturbative method for calculating the abundance of primordial black holes given an arbitrary one-point probability distribution function for the primordial curvature perturbation, . A non-perturbative method is essential when considering non-Gaussianities that cannot be treated us...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2023-05, Vol.142 (4), p.49001 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 49001 |
container_title | Europhysics letters |
container_volume | 142 |
creator | Gow, A. D. Assadullahi, H. Jackson, J. H. P. Koyama, K. Vennin, V. Wands, D. |
description | We present a non-perturbative method for calculating the abundance of primordial black holes given an arbitrary one-point probability distribution function for the primordial curvature perturbation,
. A non-perturbative method is essential when considering non-Gaussianities that cannot be treated using a conventional perturbative expansion. To determine the full statistics of the density field, we relate
ζ
to a Gaussian field by equating the cumulative distribution functions. We consider two examples: a specific local-type non-Gaussian distribution arising from ultra slow roll models, and a general piecewise model for
with an exponential tail. We demonstrate that the enhancement of primordial black hole formation is due to the intermediate regime, rather than the far tail. We also show that non-Gaussianity can have a significant impact on the shape of the primordial black hole mass distribution. |
doi_str_mv | 10.1209/0295-5075/acd417 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1209_0295_5075_acd417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110110829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-c3d23a3605a5e6c43a84cc1fe39a68786b9619bb6bc766759be79757a89f56ee3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFbvHgMeRDB2N_uNJynaCkUvel4mmw1Njdm4mxb6702I1IueBmaeeZl5ELok-I5kWM9wpnnKseQzsAUj8ghNSKZEyhRnx2hyGJ-isxg3GBOiiJig-xffpK0L3Tbk0FU7lzR9YwHbGCtoqm6fQFMkbag-fSgqqJO8BvuRrH3t4jk6KaGO7uKnTtH70-PbfJmuXhfP84dVahkRXWppkVGgAnPgTlhGQTFrSemoBqGkErkWROe5yK0UQnKdO6kll6B0yYVzdIpuxtw11GY4BcLeeKjM8mFlhh6mSkqNxY707NXItsF_bV3szMZvQ9OfZygh_ddYZbqn8EjZ4GMMrjzEEmwGnWbwZQZfZtTZr1yPK5VvfzNdWxvCMsMM071T0xZlT97-Qf4b_A2BzYGf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110110829</pqid></control><display><type>article</type><title>Non-perturbative non-Gaussianity and primordial black holes</title><source>IOP Publishing Journals</source><creator>Gow, A. D. ; Assadullahi, H. ; Jackson, J. H. P. ; Koyama, K. ; Vennin, V. ; Wands, D.</creator><creatorcontrib>Gow, A. D. ; Assadullahi, H. ; Jackson, J. H. P. ; Koyama, K. ; Vennin, V. ; Wands, D.</creatorcontrib><description>We present a non-perturbative method for calculating the abundance of primordial black holes given an arbitrary one-point probability distribution function for the primordial curvature perturbation,
. A non-perturbative method is essential when considering non-Gaussianities that cannot be treated using a conventional perturbative expansion. To determine the full statistics of the density field, we relate
ζ
to a Gaussian field by equating the cumulative distribution functions. We consider two examples: a specific local-type non-Gaussian distribution arising from ultra slow roll models, and a general piecewise model for
with an exponential tail. We demonstrate that the enhancement of primordial black hole formation is due to the intermediate regime, rather than the far tail. We also show that non-Gaussianity can have a significant impact on the shape of the primordial black hole mass distribution.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/acd417</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>Astrophysics ; Distribution functions ; General Relativity and Quantum Cosmology ; Mass distribution ; Normal distribution ; Physics ; Probability distribution functions ; Statistical analysis</subject><ispartof>Europhysics letters, 2023-05, Vol.142 (4), p.49001</ispartof><rights>Copyright © 2023 The author(s)</rights><rights>Copyright © 2023 The author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-c3d23a3605a5e6c43a84cc1fe39a68786b9619bb6bc766759be79757a89f56ee3</citedby><cites>FETCH-LOGICAL-c416t-c3d23a3605a5e6c43a84cc1fe39a68786b9619bb6bc766759be79757a89f56ee3</cites><orcidid>0000-0002-4858-555X ; 0000-0002-8851-4430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1209/0295-5075/acd417/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03877906$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gow, A. D.</creatorcontrib><creatorcontrib>Assadullahi, H.</creatorcontrib><creatorcontrib>Jackson, J. H. P.</creatorcontrib><creatorcontrib>Koyama, K.</creatorcontrib><creatorcontrib>Vennin, V.</creatorcontrib><creatorcontrib>Wands, D.</creatorcontrib><title>Non-perturbative non-Gaussianity and primordial black holes</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>We present a non-perturbative method for calculating the abundance of primordial black holes given an arbitrary one-point probability distribution function for the primordial curvature perturbation,
. A non-perturbative method is essential when considering non-Gaussianities that cannot be treated using a conventional perturbative expansion. To determine the full statistics of the density field, we relate
ζ
to a Gaussian field by equating the cumulative distribution functions. We consider two examples: a specific local-type non-Gaussian distribution arising from ultra slow roll models, and a general piecewise model for
with an exponential tail. We demonstrate that the enhancement of primordial black hole formation is due to the intermediate regime, rather than the far tail. We also show that non-Gaussianity can have a significant impact on the shape of the primordial black hole mass distribution.</description><subject>Astrophysics</subject><subject>Distribution functions</subject><subject>General Relativity and Quantum Cosmology</subject><subject>Mass distribution</subject><subject>Normal distribution</subject><subject>Physics</subject><subject>Probability distribution functions</subject><subject>Statistical analysis</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kE1Lw0AQhhdRsFbvHgMeRDB2N_uNJynaCkUvel4mmw1Njdm4mxb6702I1IueBmaeeZl5ELok-I5kWM9wpnnKseQzsAUj8ghNSKZEyhRnx2hyGJ-isxg3GBOiiJig-xffpK0L3Tbk0FU7lzR9YwHbGCtoqm6fQFMkbag-fSgqqJO8BvuRrH3t4jk6KaGO7uKnTtH70-PbfJmuXhfP84dVahkRXWppkVGgAnPgTlhGQTFrSemoBqGkErkWROe5yK0UQnKdO6kll6B0yYVzdIpuxtw11GY4BcLeeKjM8mFlhh6mSkqNxY707NXItsF_bV3szMZvQ9OfZygh_ddYZbqn8EjZ4GMMrjzEEmwGnWbwZQZfZtTZr1yPK5VvfzNdWxvCMsMM071T0xZlT97-Qf4b_A2BzYGf</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Gow, A. D.</creator><creator>Assadullahi, H.</creator><creator>Jackson, J. H. P.</creator><creator>Koyama, K.</creator><creator>Vennin, V.</creator><creator>Wands, D.</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><general>European Physical Society / EDP Sciences / Società Italiana di Fisica / IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4858-555X</orcidid><orcidid>https://orcid.org/0000-0002-8851-4430</orcidid></search><sort><creationdate>20230501</creationdate><title>Non-perturbative non-Gaussianity and primordial black holes</title><author>Gow, A. D. ; Assadullahi, H. ; Jackson, J. H. P. ; Koyama, K. ; Vennin, V. ; Wands, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-c3d23a3605a5e6c43a84cc1fe39a68786b9619bb6bc766759be79757a89f56ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Astrophysics</topic><topic>Distribution functions</topic><topic>General Relativity and Quantum Cosmology</topic><topic>Mass distribution</topic><topic>Normal distribution</topic><topic>Physics</topic><topic>Probability distribution functions</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gow, A. D.</creatorcontrib><creatorcontrib>Assadullahi, H.</creatorcontrib><creatorcontrib>Jackson, J. H. P.</creatorcontrib><creatorcontrib>Koyama, K.</creatorcontrib><creatorcontrib>Vennin, V.</creatorcontrib><creatorcontrib>Wands, D.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gow, A. D.</au><au>Assadullahi, H.</au><au>Jackson, J. H. P.</au><au>Koyama, K.</au><au>Vennin, V.</au><au>Wands, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-perturbative non-Gaussianity and primordial black holes</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>142</volume><issue>4</issue><spage>49001</spage><pages>49001-</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>We present a non-perturbative method for calculating the abundance of primordial black holes given an arbitrary one-point probability distribution function for the primordial curvature perturbation,
. A non-perturbative method is essential when considering non-Gaussianities that cannot be treated using a conventional perturbative expansion. To determine the full statistics of the density field, we relate
ζ
to a Gaussian field by equating the cumulative distribution functions. We consider two examples: a specific local-type non-Gaussian distribution arising from ultra slow roll models, and a general piecewise model for
with an exponential tail. We demonstrate that the enhancement of primordial black hole formation is due to the intermediate regime, rather than the far tail. We also show that non-Gaussianity can have a significant impact on the shape of the primordial black hole mass distribution.</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/acd417</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4858-555X</orcidid><orcidid>https://orcid.org/0000-0002-8851-4430</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0295-5075 |
ispartof | Europhysics letters, 2023-05, Vol.142 (4), p.49001 |
issn | 0295-5075 1286-4854 |
language | eng |
recordid | cdi_crossref_primary_10_1209_0295_5075_acd417 |
source | IOP Publishing Journals |
subjects | Astrophysics Distribution functions General Relativity and Quantum Cosmology Mass distribution Normal distribution Physics Probability distribution functions Statistical analysis |
title | Non-perturbative non-Gaussianity and primordial black holes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-perturbative%20non-Gaussianity%20and%20primordial%20black%20holes&rft.jtitle=Europhysics%20letters&rft.au=Gow,%20A.%20D.&rft.date=2023-05-01&rft.volume=142&rft.issue=4&rft.spage=49001&rft.pages=49001-&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/acd417&rft_dat=%3Cproquest_cross%3E3110110829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110110829&rft_id=info:pmid/&rfr_iscdi=true |