Non-perturbative non-Gaussianity and primordial black holes

We present a non-perturbative method for calculating the abundance of primordial black holes given an arbitrary one-point probability distribution function for the primordial curvature perturbation, . A non-perturbative method is essential when considering non-Gaussianities that cannot be treated us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2023-05, Vol.142 (4), p.49001
Hauptverfasser: Gow, A. D., Assadullahi, H., Jackson, J. H. P., Koyama, K., Vennin, V., Wands, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 49001
container_title Europhysics letters
container_volume 142
creator Gow, A. D.
Assadullahi, H.
Jackson, J. H. P.
Koyama, K.
Vennin, V.
Wands, D.
description We present a non-perturbative method for calculating the abundance of primordial black holes given an arbitrary one-point probability distribution function for the primordial curvature perturbation, . A non-perturbative method is essential when considering non-Gaussianities that cannot be treated using a conventional perturbative expansion. To determine the full statistics of the density field, we relate ζ to a Gaussian field by equating the cumulative distribution functions. We consider two examples: a specific local-type non-Gaussian distribution arising from ultra slow roll models, and a general piecewise model for with an exponential tail. We demonstrate that the enhancement of primordial black hole formation is due to the intermediate regime, rather than the far tail. We also show that non-Gaussianity can have a significant impact on the shape of the primordial black hole mass distribution.
doi_str_mv 10.1209/0295-5075/acd417
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1209_0295_5075_acd417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110110829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-c3d23a3605a5e6c43a84cc1fe39a68786b9619bb6bc766759be79757a89f56ee3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFbvHgMeRDB2N_uNJynaCkUvel4mmw1Njdm4mxb6702I1IueBmaeeZl5ELok-I5kWM9wpnnKseQzsAUj8ghNSKZEyhRnx2hyGJ-isxg3GBOiiJig-xffpK0L3Tbk0FU7lzR9YwHbGCtoqm6fQFMkbag-fSgqqJO8BvuRrH3t4jk6KaGO7uKnTtH70-PbfJmuXhfP84dVahkRXWppkVGgAnPgTlhGQTFrSemoBqGkErkWROe5yK0UQnKdO6kll6B0yYVzdIpuxtw11GY4BcLeeKjM8mFlhh6mSkqNxY707NXItsF_bV3szMZvQ9OfZygh_ddYZbqn8EjZ4GMMrjzEEmwGnWbwZQZfZtTZr1yPK5VvfzNdWxvCMsMM071T0xZlT97-Qf4b_A2BzYGf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110110829</pqid></control><display><type>article</type><title>Non-perturbative non-Gaussianity and primordial black holes</title><source>IOP Publishing Journals</source><creator>Gow, A. D. ; Assadullahi, H. ; Jackson, J. H. P. ; Koyama, K. ; Vennin, V. ; Wands, D.</creator><creatorcontrib>Gow, A. D. ; Assadullahi, H. ; Jackson, J. H. P. ; Koyama, K. ; Vennin, V. ; Wands, D.</creatorcontrib><description>We present a non-perturbative method for calculating the abundance of primordial black holes given an arbitrary one-point probability distribution function for the primordial curvature perturbation, . A non-perturbative method is essential when considering non-Gaussianities that cannot be treated using a conventional perturbative expansion. To determine the full statistics of the density field, we relate ζ to a Gaussian field by equating the cumulative distribution functions. We consider two examples: a specific local-type non-Gaussian distribution arising from ultra slow roll models, and a general piecewise model for with an exponential tail. We demonstrate that the enhancement of primordial black hole formation is due to the intermediate regime, rather than the far tail. We also show that non-Gaussianity can have a significant impact on the shape of the primordial black hole mass distribution.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/acd417</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>Astrophysics ; Distribution functions ; General Relativity and Quantum Cosmology ; Mass distribution ; Normal distribution ; Physics ; Probability distribution functions ; Statistical analysis</subject><ispartof>Europhysics letters, 2023-05, Vol.142 (4), p.49001</ispartof><rights>Copyright © 2023 The author(s)</rights><rights>Copyright © 2023 The author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-c3d23a3605a5e6c43a84cc1fe39a68786b9619bb6bc766759be79757a89f56ee3</citedby><cites>FETCH-LOGICAL-c416t-c3d23a3605a5e6c43a84cc1fe39a68786b9619bb6bc766759be79757a89f56ee3</cites><orcidid>0000-0002-4858-555X ; 0000-0002-8851-4430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1209/0295-5075/acd417/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03877906$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gow, A. D.</creatorcontrib><creatorcontrib>Assadullahi, H.</creatorcontrib><creatorcontrib>Jackson, J. H. P.</creatorcontrib><creatorcontrib>Koyama, K.</creatorcontrib><creatorcontrib>Vennin, V.</creatorcontrib><creatorcontrib>Wands, D.</creatorcontrib><title>Non-perturbative non-Gaussianity and primordial black holes</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>We present a non-perturbative method for calculating the abundance of primordial black holes given an arbitrary one-point probability distribution function for the primordial curvature perturbation, . A non-perturbative method is essential when considering non-Gaussianities that cannot be treated using a conventional perturbative expansion. To determine the full statistics of the density field, we relate ζ to a Gaussian field by equating the cumulative distribution functions. We consider two examples: a specific local-type non-Gaussian distribution arising from ultra slow roll models, and a general piecewise model for with an exponential tail. We demonstrate that the enhancement of primordial black hole formation is due to the intermediate regime, rather than the far tail. We also show that non-Gaussianity can have a significant impact on the shape of the primordial black hole mass distribution.</description><subject>Astrophysics</subject><subject>Distribution functions</subject><subject>General Relativity and Quantum Cosmology</subject><subject>Mass distribution</subject><subject>Normal distribution</subject><subject>Physics</subject><subject>Probability distribution functions</subject><subject>Statistical analysis</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kE1Lw0AQhhdRsFbvHgMeRDB2N_uNJynaCkUvel4mmw1Njdm4mxb6702I1IueBmaeeZl5ELok-I5kWM9wpnnKseQzsAUj8ghNSKZEyhRnx2hyGJ-isxg3GBOiiJig-xffpK0L3Tbk0FU7lzR9YwHbGCtoqm6fQFMkbag-fSgqqJO8BvuRrH3t4jk6KaGO7uKnTtH70-PbfJmuXhfP84dVahkRXWppkVGgAnPgTlhGQTFrSemoBqGkErkWROe5yK0UQnKdO6kll6B0yYVzdIpuxtw11GY4BcLeeKjM8mFlhh6mSkqNxY707NXItsF_bV3szMZvQ9OfZygh_ddYZbqn8EjZ4GMMrjzEEmwGnWbwZQZfZtTZr1yPK5VvfzNdWxvCMsMM071T0xZlT97-Qf4b_A2BzYGf</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Gow, A. D.</creator><creator>Assadullahi, H.</creator><creator>Jackson, J. H. P.</creator><creator>Koyama, K.</creator><creator>Vennin, V.</creator><creator>Wands, D.</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><general>European Physical Society / EDP Sciences / Società Italiana di Fisica / IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4858-555X</orcidid><orcidid>https://orcid.org/0000-0002-8851-4430</orcidid></search><sort><creationdate>20230501</creationdate><title>Non-perturbative non-Gaussianity and primordial black holes</title><author>Gow, A. D. ; Assadullahi, H. ; Jackson, J. H. P. ; Koyama, K. ; Vennin, V. ; Wands, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-c3d23a3605a5e6c43a84cc1fe39a68786b9619bb6bc766759be79757a89f56ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Astrophysics</topic><topic>Distribution functions</topic><topic>General Relativity and Quantum Cosmology</topic><topic>Mass distribution</topic><topic>Normal distribution</topic><topic>Physics</topic><topic>Probability distribution functions</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gow, A. D.</creatorcontrib><creatorcontrib>Assadullahi, H.</creatorcontrib><creatorcontrib>Jackson, J. H. P.</creatorcontrib><creatorcontrib>Koyama, K.</creatorcontrib><creatorcontrib>Vennin, V.</creatorcontrib><creatorcontrib>Wands, D.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gow, A. D.</au><au>Assadullahi, H.</au><au>Jackson, J. H. P.</au><au>Koyama, K.</au><au>Vennin, V.</au><au>Wands, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-perturbative non-Gaussianity and primordial black holes</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>142</volume><issue>4</issue><spage>49001</spage><pages>49001-</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>We present a non-perturbative method for calculating the abundance of primordial black holes given an arbitrary one-point probability distribution function for the primordial curvature perturbation, . A non-perturbative method is essential when considering non-Gaussianities that cannot be treated using a conventional perturbative expansion. To determine the full statistics of the density field, we relate ζ to a Gaussian field by equating the cumulative distribution functions. We consider two examples: a specific local-type non-Gaussian distribution arising from ultra slow roll models, and a general piecewise model for with an exponential tail. We demonstrate that the enhancement of primordial black hole formation is due to the intermediate regime, rather than the far tail. We also show that non-Gaussianity can have a significant impact on the shape of the primordial black hole mass distribution.</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/acd417</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4858-555X</orcidid><orcidid>https://orcid.org/0000-0002-8851-4430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0295-5075
ispartof Europhysics letters, 2023-05, Vol.142 (4), p.49001
issn 0295-5075
1286-4854
language eng
recordid cdi_crossref_primary_10_1209_0295_5075_acd417
source IOP Publishing Journals
subjects Astrophysics
Distribution functions
General Relativity and Quantum Cosmology
Mass distribution
Normal distribution
Physics
Probability distribution functions
Statistical analysis
title Non-perturbative non-Gaussianity and primordial black holes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-perturbative%20non-Gaussianity%20and%20primordial%20black%20holes&rft.jtitle=Europhysics%20letters&rft.au=Gow,%20A.%20D.&rft.date=2023-05-01&rft.volume=142&rft.issue=4&rft.spage=49001&rft.pages=49001-&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/acd417&rft_dat=%3Cproquest_cross%3E3110110829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110110829&rft_id=info:pmid/&rfr_iscdi=true