Mechanical fragility of erythrocyte membrane in neonates and adults

The shortened life span of neonatal red blood cells (RBC) is associated with accelerated membrane loss. The present study was designed to measure the critical shear force that causes membrane failure and the rate of membrane failure for neonatal and adult RBC. A micropipette technique was used to de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric research 1992-07, Vol.32 (1), p.92-96
Hauptverfasser: BÖHLER, T, LEO, A, STADLER, A, LINDERKAMP, O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue 1
container_start_page 92
container_title Pediatric research
container_volume 32
creator BÖHLER, T
LEO, A
STADLER, A
LINDERKAMP, O
description The shortened life span of neonatal red blood cells (RBC) is associated with accelerated membrane loss. The present study was designed to measure the critical shear force that causes membrane failure and the rate of membrane failure for neonatal and adult RBC. A micropipette technique was used to determine the membrane extensional (shear) elastic modulus (i.e. resistance of the membrane to extensional elastic deformation), the rate of extensional membrane deformation (i.e. surface viscosity), and the tension for local membrane fragmentation. A flow channel system was used to determine the critical shear force of plastic membrane deformation (i.e. beginning of membrane tether formation), the rate of plastic deformation, and the plastic shear viscosity coefficient. The extensional elastic modulus of neonatal RBC was 18% smaller and the rate of elastic deformation was 25% longer compared with adult cells (p less than 0.05). Membrane surface viscosity was similar for both cell types. The tension for local membrane fragmentation in the micropipette was 23% lower in neonates than in adults. However, the strain (i.e. extent of membrane deformation calculated as ratio of the stress resultant and the elastic modulus) at which membrane rupture in the micropipette occurred was similar for neonatal and adult RBC. This indicates that the smaller critical tension for neonatal RBC membrane failure was due to increased membrane elastic deformability.
doi_str_mv 10.1203/00006450-199207000-00018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1203_00006450_199207000_00018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73076041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-bf56995ebf3eaa41fdcdae44947450298463956fc10c3bec09796014897accd53</originalsourceid><addsrcrecordid>eNpFkEtLAzEQx4MotVY_gpCDeFtNmsdujlJ8QcWLnkM2O7GRfdQke9hvb7S1DgzDMP95_RDClNzQJWG3JJvkghRUqSUpc1Zkp9URmlPBcsJ5eYzmhDBaMKWqU3QW42dWcFHxGZpRyUQl6BytXsBuTO-tabEL5sO3Pk14cBjClDZhsFMC3EFXB9MD9j3uYehNgohN32DTjG2K5-jEmTbCxT4u0PvD_dvqqVi_Pj6v7taF5UKkonZCKiWgdgyM4dQ1tjHAueJl_mSpKi6ZEtJZSiyrwRJVKpkvrlRprG0EW6Dr3dxtGL5GiEl3Plpo23zaMEZdMlJKwmkWVjuhDUOMAZzeBt-ZMGlK9A8__cdPH_jpX3659XK_Y6w7aP4bd8By_WpfNzEzy8h66-NBJjjleSL7BkyDd3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73076041</pqid></control><display><type>article</type><title>Mechanical fragility of erythrocyte membrane in neonates and adults</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>BÖHLER, T ; LEO, A ; STADLER, A ; LINDERKAMP, O</creator><creatorcontrib>BÖHLER, T ; LEO, A ; STADLER, A ; LINDERKAMP, O</creatorcontrib><description>The shortened life span of neonatal red blood cells (RBC) is associated with accelerated membrane loss. The present study was designed to measure the critical shear force that causes membrane failure and the rate of membrane failure for neonatal and adult RBC. A micropipette technique was used to determine the membrane extensional (shear) elastic modulus (i.e. resistance of the membrane to extensional elastic deformation), the rate of extensional membrane deformation (i.e. surface viscosity), and the tension for local membrane fragmentation. A flow channel system was used to determine the critical shear force of plastic membrane deformation (i.e. beginning of membrane tether formation), the rate of plastic deformation, and the plastic shear viscosity coefficient. The extensional elastic modulus of neonatal RBC was 18% smaller and the rate of elastic deformation was 25% longer compared with adult cells (p less than 0.05). Membrane surface viscosity was similar for both cell types. The tension for local membrane fragmentation in the micropipette was 23% lower in neonates than in adults. However, the strain (i.e. extent of membrane deformation calculated as ratio of the stress resultant and the elastic modulus) at which membrane rupture in the micropipette occurred was similar for neonatal and adult RBC. This indicates that the smaller critical tension for neonatal RBC membrane failure was due to increased membrane elastic deformability.</description><identifier>ISSN: 0031-3998</identifier><identifier>EISSN: 1530-0447</identifier><identifier>DOI: 10.1203/00006450-199207000-00018</identifier><identifier>PMID: 1635851</identifier><identifier>CODEN: PEREBL</identifier><language>eng</language><publisher>Hagerstown, MD: Lippincott Williams &amp; Wilkins</publisher><subject>Adult ; Biological and medical sciences ; Biomechanical Phenomena ; Elasticity ; Erythrocyte Aging - physiology ; Erythrocyte Deformability - physiology ; Erythrocyte Membrane - physiology ; Fetal Blood - cytology ; Fundamental and applied biological sciences. Psychology ; Humans ; In Vitro Techniques ; Infant, Newborn ; Male ; Stress, Mechanical ; Vertebrates: blood, hematopoietic organs, reticuloendothelial system ; Viscosity</subject><ispartof>Pediatric research, 1992-07, Vol.32 (1), p.92-96</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-bf56995ebf3eaa41fdcdae44947450298463956fc10c3bec09796014897accd53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5414992$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1635851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BÖHLER, T</creatorcontrib><creatorcontrib>LEO, A</creatorcontrib><creatorcontrib>STADLER, A</creatorcontrib><creatorcontrib>LINDERKAMP, O</creatorcontrib><title>Mechanical fragility of erythrocyte membrane in neonates and adults</title><title>Pediatric research</title><addtitle>Pediatr Res</addtitle><description>The shortened life span of neonatal red blood cells (RBC) is associated with accelerated membrane loss. The present study was designed to measure the critical shear force that causes membrane failure and the rate of membrane failure for neonatal and adult RBC. A micropipette technique was used to determine the membrane extensional (shear) elastic modulus (i.e. resistance of the membrane to extensional elastic deformation), the rate of extensional membrane deformation (i.e. surface viscosity), and the tension for local membrane fragmentation. A flow channel system was used to determine the critical shear force of plastic membrane deformation (i.e. beginning of membrane tether formation), the rate of plastic deformation, and the plastic shear viscosity coefficient. The extensional elastic modulus of neonatal RBC was 18% smaller and the rate of elastic deformation was 25% longer compared with adult cells (p less than 0.05). Membrane surface viscosity was similar for both cell types. The tension for local membrane fragmentation in the micropipette was 23% lower in neonates than in adults. However, the strain (i.e. extent of membrane deformation calculated as ratio of the stress resultant and the elastic modulus) at which membrane rupture in the micropipette occurred was similar for neonatal and adult RBC. This indicates that the smaller critical tension for neonatal RBC membrane failure was due to increased membrane elastic deformability.</description><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Elasticity</subject><subject>Erythrocyte Aging - physiology</subject><subject>Erythrocyte Deformability - physiology</subject><subject>Erythrocyte Membrane - physiology</subject><subject>Fetal Blood - cytology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Infant, Newborn</subject><subject>Male</subject><subject>Stress, Mechanical</subject><subject>Vertebrates: blood, hematopoietic organs, reticuloendothelial system</subject><subject>Viscosity</subject><issn>0031-3998</issn><issn>1530-0447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkEtLAzEQx4MotVY_gpCDeFtNmsdujlJ8QcWLnkM2O7GRfdQke9hvb7S1DgzDMP95_RDClNzQJWG3JJvkghRUqSUpc1Zkp9URmlPBcsJ5eYzmhDBaMKWqU3QW42dWcFHxGZpRyUQl6BytXsBuTO-tabEL5sO3Pk14cBjClDZhsFMC3EFXB9MD9j3uYehNgohN32DTjG2K5-jEmTbCxT4u0PvD_dvqqVi_Pj6v7taF5UKkonZCKiWgdgyM4dQ1tjHAueJl_mSpKi6ZEtJZSiyrwRJVKpkvrlRprG0EW6Dr3dxtGL5GiEl3Plpo23zaMEZdMlJKwmkWVjuhDUOMAZzeBt-ZMGlK9A8__cdPH_jpX3659XK_Y6w7aP4bd8By_WpfNzEzy8h66-NBJjjleSL7BkyDd3Y</recordid><startdate>19920701</startdate><enddate>19920701</enddate><creator>BÖHLER, T</creator><creator>LEO, A</creator><creator>STADLER, A</creator><creator>LINDERKAMP, O</creator><general>Lippincott Williams &amp; Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19920701</creationdate><title>Mechanical fragility of erythrocyte membrane in neonates and adults</title><author>BÖHLER, T ; LEO, A ; STADLER, A ; LINDERKAMP, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-bf56995ebf3eaa41fdcdae44947450298463956fc10c3bec09796014897accd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Elasticity</topic><topic>Erythrocyte Aging - physiology</topic><topic>Erythrocyte Deformability - physiology</topic><topic>Erythrocyte Membrane - physiology</topic><topic>Fetal Blood - cytology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Infant, Newborn</topic><topic>Male</topic><topic>Stress, Mechanical</topic><topic>Vertebrates: blood, hematopoietic organs, reticuloendothelial system</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BÖHLER, T</creatorcontrib><creatorcontrib>LEO, A</creatorcontrib><creatorcontrib>STADLER, A</creatorcontrib><creatorcontrib>LINDERKAMP, O</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Pediatric research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BÖHLER, T</au><au>LEO, A</au><au>STADLER, A</au><au>LINDERKAMP, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical fragility of erythrocyte membrane in neonates and adults</atitle><jtitle>Pediatric research</jtitle><addtitle>Pediatr Res</addtitle><date>1992-07-01</date><risdate>1992</risdate><volume>32</volume><issue>1</issue><spage>92</spage><epage>96</epage><pages>92-96</pages><issn>0031-3998</issn><eissn>1530-0447</eissn><coden>PEREBL</coden><abstract>The shortened life span of neonatal red blood cells (RBC) is associated with accelerated membrane loss. The present study was designed to measure the critical shear force that causes membrane failure and the rate of membrane failure for neonatal and adult RBC. A micropipette technique was used to determine the membrane extensional (shear) elastic modulus (i.e. resistance of the membrane to extensional elastic deformation), the rate of extensional membrane deformation (i.e. surface viscosity), and the tension for local membrane fragmentation. A flow channel system was used to determine the critical shear force of plastic membrane deformation (i.e. beginning of membrane tether formation), the rate of plastic deformation, and the plastic shear viscosity coefficient. The extensional elastic modulus of neonatal RBC was 18% smaller and the rate of elastic deformation was 25% longer compared with adult cells (p less than 0.05). Membrane surface viscosity was similar for both cell types. The tension for local membrane fragmentation in the micropipette was 23% lower in neonates than in adults. However, the strain (i.e. extent of membrane deformation calculated as ratio of the stress resultant and the elastic modulus) at which membrane rupture in the micropipette occurred was similar for neonatal and adult RBC. This indicates that the smaller critical tension for neonatal RBC membrane failure was due to increased membrane elastic deformability.</abstract><cop>Hagerstown, MD</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>1635851</pmid><doi>10.1203/00006450-199207000-00018</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-3998
ispartof Pediatric research, 1992-07, Vol.32 (1), p.92-96
issn 0031-3998
1530-0447
language eng
recordid cdi_crossref_primary_10_1203_00006450_199207000_00018
source MEDLINE; Journals@Ovid Complete; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Adult
Biological and medical sciences
Biomechanical Phenomena
Elasticity
Erythrocyte Aging - physiology
Erythrocyte Deformability - physiology
Erythrocyte Membrane - physiology
Fetal Blood - cytology
Fundamental and applied biological sciences. Psychology
Humans
In Vitro Techniques
Infant, Newborn
Male
Stress, Mechanical
Vertebrates: blood, hematopoietic organs, reticuloendothelial system
Viscosity
title Mechanical fragility of erythrocyte membrane in neonates and adults
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20fragility%20of%20erythrocyte%20membrane%20in%20neonates%20and%20adults&rft.jtitle=Pediatric%20research&rft.au=B%C3%96HLER,%20T&rft.date=1992-07-01&rft.volume=32&rft.issue=1&rft.spage=92&rft.epage=96&rft.pages=92-96&rft.issn=0031-3998&rft.eissn=1530-0447&rft.coden=PEREBL&rft_id=info:doi/10.1203/00006450-199207000-00018&rft_dat=%3Cproquest_cross%3E73076041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73076041&rft_id=info:pmid/1635851&rfr_iscdi=true