A Bayesian Nonparametric Approach to Inference for Quantile Regression

We develop a Bayesian method for nonparametric model-based quantile regression. The approach involves flexible Dirichlet process mixture models for the joint distribution of the response and the covariates, with posterior inference for different quantile curves emerging from the conditional response...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of business & economic statistics 2010-07, Vol.28 (3), p.357-369
Hauptverfasser: Taddy, Matthew A., Kottas, Athanasios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 369
container_issue 3
container_start_page 357
container_title Journal of business & economic statistics
container_volume 28
creator Taddy, Matthew A.
Kottas, Athanasios
description We develop a Bayesian method for nonparametric model-based quantile regression. The approach involves flexible Dirichlet process mixture models for the joint distribution of the response and the covariates, with posterior inference for different quantile curves emerging from the conditional response distribution given the covariates. An extension to allow for partially observed responses leads to a novel Tobit quantile regression framework. We use simulated data sets and two data examples from the literature to illustrate the capacity of the model to uncover nonlinearities in quantile regression curves, as well as nonstandard features in the response distribution.
doi_str_mv 10.1198/jbes.2009.07331
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1198_jbes_2009_07331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20750845</jstor_id><sourcerecordid>20750845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-d12fb0f56ecbe785b2b1b7130165040abc15f9d6ee8fdb16fc04bc785e7ad2593</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKtnT0Lwvu1kt9nseqvFaqEoip5Dkp3olm1Sky3Sf29qxZtzGZj35s3wEXLJYMRYXY1XGuMoB6hHIIqCHZEB44XIcgHimAzSjGcAjJ-SsxhXkKri5YDMp_RW7TC2ytFH7zYqqDX2oTV0utkEr8wH7T1dOIsBnUFqfaDPW-X6tkP6gu8BY2y9OycnVnURL377kLzN715nD9ny6X4xmy4zMwHeZw3LrQbLSzQaRcV1rpkWrABWcpiA0oZxWzclYmUbzUprYKJNMqJQTc7rYkiuD7npt88txl6u_Da4dFJyKFJKIfam8cFkgo8xoJWb0K5V2EkGcs9K7lnJPSv5wyptXB02VrH34c-eg-BQTXjSbw566xKAtfryoWtkr3adDzYoZ9ooi__CvwFBTnqW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>503165379</pqid></control><display><type>article</type><title>A Bayesian Nonparametric Approach to Inference for Quantile Regression</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Taddy, Matthew A. ; Kottas, Athanasios</creator><creatorcontrib>Taddy, Matthew A. ; Kottas, Athanasios</creatorcontrib><description>We develop a Bayesian method for nonparametric model-based quantile regression. The approach involves flexible Dirichlet process mixture models for the joint distribution of the response and the covariates, with posterior inference for different quantile curves emerging from the conditional response distribution given the covariates. An extension to allow for partially observed responses leads to a novel Tobit quantile regression framework. We use simulated data sets and two data examples from the literature to illustrate the capacity of the model to uncover nonlinearities in quantile regression curves, as well as nonstandard features in the response distribution.</description><identifier>ISSN: 0735-0015</identifier><identifier>EISSN: 1537-2707</identifier><identifier>DOI: 10.1198/jbes.2009.07331</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Bayesian analysis ; Children ; Datasets ; Dirichlet process mixture model ; Economic models ; Inference ; Markov chain Monte Carlo ; Modeling ; Multivariate normal mixture ; Nonparametric models ; Parametric models ; Quantile regression ; Regression analysis ; Simulation ; Simulations ; Studies ; Tobit quantile regression</subject><ispartof>Journal of business &amp; economic statistics, 2010-07, Vol.28 (3), p.357-369</ispartof><rights>2010 American Statistical Association 2010</rights><rights>2010 American Statistical Association</rights><rights>Copyright American Statistical Association Jul 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-d12fb0f56ecbe785b2b1b7130165040abc15f9d6ee8fdb16fc04bc785e7ad2593</citedby><cites>FETCH-LOGICAL-c405t-d12fb0f56ecbe785b2b1b7130165040abc15f9d6ee8fdb16fc04bc785e7ad2593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20750845$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20750845$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27923,27924,58016,58020,58249,58253</link.rule.ids></links><search><creatorcontrib>Taddy, Matthew A.</creatorcontrib><creatorcontrib>Kottas, Athanasios</creatorcontrib><title>A Bayesian Nonparametric Approach to Inference for Quantile Regression</title><title>Journal of business &amp; economic statistics</title><description>We develop a Bayesian method for nonparametric model-based quantile regression. The approach involves flexible Dirichlet process mixture models for the joint distribution of the response and the covariates, with posterior inference for different quantile curves emerging from the conditional response distribution given the covariates. An extension to allow for partially observed responses leads to a novel Tobit quantile regression framework. We use simulated data sets and two data examples from the literature to illustrate the capacity of the model to uncover nonlinearities in quantile regression curves, as well as nonstandard features in the response distribution.</description><subject>Bayesian analysis</subject><subject>Children</subject><subject>Datasets</subject><subject>Dirichlet process mixture model</subject><subject>Economic models</subject><subject>Inference</subject><subject>Markov chain Monte Carlo</subject><subject>Modeling</subject><subject>Multivariate normal mixture</subject><subject>Nonparametric models</subject><subject>Parametric models</subject><subject>Quantile regression</subject><subject>Regression analysis</subject><subject>Simulation</subject><subject>Simulations</subject><subject>Studies</subject><subject>Tobit quantile regression</subject><issn>0735-0015</issn><issn>1537-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKtnT0Lwvu1kt9nseqvFaqEoip5Dkp3olm1Sky3Sf29qxZtzGZj35s3wEXLJYMRYXY1XGuMoB6hHIIqCHZEB44XIcgHimAzSjGcAjJ-SsxhXkKri5YDMp_RW7TC2ytFH7zYqqDX2oTV0utkEr8wH7T1dOIsBnUFqfaDPW-X6tkP6gu8BY2y9OycnVnURL377kLzN715nD9ny6X4xmy4zMwHeZw3LrQbLSzQaRcV1rpkWrABWcpiA0oZxWzclYmUbzUprYKJNMqJQTc7rYkiuD7npt88txl6u_Da4dFJyKFJKIfam8cFkgo8xoJWb0K5V2EkGcs9K7lnJPSv5wyptXB02VrH34c-eg-BQTXjSbw566xKAtfryoWtkr3adDzYoZ9ooi__CvwFBTnqW</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Taddy, Matthew A.</creator><creator>Kottas, Athanasios</creator><general>Taylor &amp; Francis</general><general>American Statistical Association</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100701</creationdate><title>A Bayesian Nonparametric Approach to Inference for Quantile Regression</title><author>Taddy, Matthew A. ; Kottas, Athanasios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-d12fb0f56ecbe785b2b1b7130165040abc15f9d6ee8fdb16fc04bc785e7ad2593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bayesian analysis</topic><topic>Children</topic><topic>Datasets</topic><topic>Dirichlet process mixture model</topic><topic>Economic models</topic><topic>Inference</topic><topic>Markov chain Monte Carlo</topic><topic>Modeling</topic><topic>Multivariate normal mixture</topic><topic>Nonparametric models</topic><topic>Parametric models</topic><topic>Quantile regression</topic><topic>Regression analysis</topic><topic>Simulation</topic><topic>Simulations</topic><topic>Studies</topic><topic>Tobit quantile regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taddy, Matthew A.</creatorcontrib><creatorcontrib>Kottas, Athanasios</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of business &amp; economic statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taddy, Matthew A.</au><au>Kottas, Athanasios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Nonparametric Approach to Inference for Quantile Regression</atitle><jtitle>Journal of business &amp; economic statistics</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>28</volume><issue>3</issue><spage>357</spage><epage>369</epage><pages>357-369</pages><issn>0735-0015</issn><eissn>1537-2707</eissn><abstract>We develop a Bayesian method for nonparametric model-based quantile regression. The approach involves flexible Dirichlet process mixture models for the joint distribution of the response and the covariates, with posterior inference for different quantile curves emerging from the conditional response distribution given the covariates. An extension to allow for partially observed responses leads to a novel Tobit quantile regression framework. We use simulated data sets and two data examples from the literature to illustrate the capacity of the model to uncover nonlinearities in quantile regression curves, as well as nonstandard features in the response distribution.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1198/jbes.2009.07331</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0735-0015
ispartof Journal of business & economic statistics, 2010-07, Vol.28 (3), p.357-369
issn 0735-0015
1537-2707
language eng
recordid cdi_crossref_primary_10_1198_jbes_2009_07331
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Bayesian analysis
Children
Datasets
Dirichlet process mixture model
Economic models
Inference
Markov chain Monte Carlo
Modeling
Multivariate normal mixture
Nonparametric models
Parametric models
Quantile regression
Regression analysis
Simulation
Simulations
Studies
Tobit quantile regression
title A Bayesian Nonparametric Approach to Inference for Quantile Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Nonparametric%20Approach%20to%20Inference%20for%20Quantile%20Regression&rft.jtitle=Journal%20of%20business%20&%20economic%20statistics&rft.au=Taddy,%20Matthew%20A.&rft.date=2010-07-01&rft.volume=28&rft.issue=3&rft.spage=357&rft.epage=369&rft.pages=357-369&rft.issn=0735-0015&rft.eissn=1537-2707&rft_id=info:doi/10.1198/jbes.2009.07331&rft_dat=%3Cjstor_cross%3E20750845%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=503165379&rft_id=info:pmid/&rft_jstor_id=20750845&rfr_iscdi=true