Anisotropic Matern correlation and spatial prediction using REML
The Matérn correlation function provides great flexibility for modeling spatially correlated random processes in two dimensions, in particular via a smoothness parameter, whose estimation allows data to determine the degree of smoothness of a spatial process. The extension to include anisotropy prov...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural, biological, and environmental statistics biological, and environmental statistics, 2007-06, Vol.12 (2), p.147-160 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160 |
---|---|
container_issue | 2 |
container_start_page | 147 |
container_title | Journal of agricultural, biological, and environmental statistics |
container_volume | 12 |
creator | Haskard, K.A Cullis, B.R Verbyla, A.P |
description | The Matérn correlation function provides great flexibility for modeling spatially correlated random processes in two dimensions, in particular via a smoothness parameter, whose estimation allows data to determine the degree of smoothness of a spatial process. The extension to include anisotropy provides a very general and flexible class of spatial covariance functions that can be used in a model-based approach to geostatistics, in which parameter estimation is achieved via REML and prediction is within the E-BLUP framework. In this article we develop a general class of linear mixed models using an anisotropic Matérn class with an extended metric. The approach is illustrated by application to soil salinity data in a rice-growing field in Australia, and to fine-scale soil pH data. It is found that anisotropy is an important aspect of both datasets, emphasizing the value of a straightforward and accessible approach to modeling anisotropy. |
doi_str_mv | 10.1198/108571107X196004 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1198_108571107X196004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27595633</jstor_id><sourcerecordid>27595633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-3a5cf1cbed60848150a8bc33e50f7adabcbbc86369aae3d590db7638574daca23</originalsourceid><addsrcrecordid>eNpdkM1LxDAQxYMouK7evYi9eKzOJE2a3lyW9QO6COqCtzJN06VLbUtSD_73Zq0oeJrH_OY9mMfYOcI1YqZvELRMESF9w0wBJAdshlKkMVeZOAw64Djw9JideL8DQKGAz9jtomt8P7p-aEy0ptG6LjK9c7alsem7iLoq8kPQ1EaDs1Vjvtcfvum20fNqnZ-yo5pab89-5pxt7lavy4c4f7p_XC7y2AiFYyxImhpNaSsFOtEogXRphLAS6pQqKk1ZGq2EyoisqGQGVZkqEX5KKjLExZzBlGtc772zdTG45p3cZ4FQ7Bso_jcQLFeTZSBvqK0ddabxfz6tOWouwt3FdLfzY-9-OU9lJpXY88uJ19QXtHUhY_PCQ4MQXlE8QfEF2r9uWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anisotropic Matern correlation and spatial prediction using REML</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Haskard, K.A ; Cullis, B.R ; Verbyla, A.P</creator><creatorcontrib>Haskard, K.A ; Cullis, B.R ; Verbyla, A.P</creatorcontrib><description>The Matérn correlation function provides great flexibility for modeling spatially correlated random processes in two dimensions, in particular via a smoothness parameter, whose estimation allows data to determine the degree of smoothness of a spatial process. The extension to include anisotropy provides a very general and flexible class of spatial covariance functions that can be used in a model-based approach to geostatistics, in which parameter estimation is achieved via REML and prediction is within the E-BLUP framework. In this article we develop a general class of linear mixed models using an anisotropic Matérn class with an extended metric. The approach is illustrated by application to soil salinity data in a rice-growing field in Australia, and to fine-scale soil pH data. It is found that anisotropy is an important aspect of both datasets, emphasizing the value of a straightforward and accessible approach to modeling anisotropy.</description><identifier>ISSN: 1085-7117</identifier><identifier>EISSN: 1537-2693</identifier><identifier>DOI: 10.1198/108571107X196004</identifier><language>eng</language><publisher>Washington, DC: American Statistical Association and the International Biometric Society</publisher><subject>agricultural soils ; Agronomy. Soil science and plant productions ; Anisotropy ; Biological and medical sciences ; Biometrics, statistics, experimental designs, modeling, agricultural computer applications ; correlation ; Correlations ; Covariance ; Datasets ; electrical conductivity ; equations ; Fundamental and applied biological sciences. Psychology ; Generalities. Biometrics, experimentation. Remote sensing ; geometric anisotropy ; geostatistics ; Kriging ; Mathematical functions ; Modeling ; Parametric models ; residual maximum likelihood ; rice soils ; soil salinity ; spatial data ; Spatial models ; statistical analysis ; statistical models ; Statistical variance</subject><ispartof>Journal of agricultural, biological, and environmental statistics, 2007-06, Vol.12 (2), p.147-160</ispartof><rights>Copyright 2007 American Statistical Association and the International Biometric Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-3a5cf1cbed60848150a8bc33e50f7adabcbbc86369aae3d590db7638574daca23</citedby><cites>FETCH-LOGICAL-c361t-3a5cf1cbed60848150a8bc33e50f7adabcbbc86369aae3d590db7638574daca23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27595633$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27595633$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57996,58000,58229,58233</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18821823$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Haskard, K.A</creatorcontrib><creatorcontrib>Cullis, B.R</creatorcontrib><creatorcontrib>Verbyla, A.P</creatorcontrib><title>Anisotropic Matern correlation and spatial prediction using REML</title><title>Journal of agricultural, biological, and environmental statistics</title><description>The Matérn correlation function provides great flexibility for modeling spatially correlated random processes in two dimensions, in particular via a smoothness parameter, whose estimation allows data to determine the degree of smoothness of a spatial process. The extension to include anisotropy provides a very general and flexible class of spatial covariance functions that can be used in a model-based approach to geostatistics, in which parameter estimation is achieved via REML and prediction is within the E-BLUP framework. In this article we develop a general class of linear mixed models using an anisotropic Matérn class with an extended metric. The approach is illustrated by application to soil salinity data in a rice-growing field in Australia, and to fine-scale soil pH data. It is found that anisotropy is an important aspect of both datasets, emphasizing the value of a straightforward and accessible approach to modeling anisotropy.</description><subject>agricultural soils</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Anisotropy</subject><subject>Biological and medical sciences</subject><subject>Biometrics, statistics, experimental designs, modeling, agricultural computer applications</subject><subject>correlation</subject><subject>Correlations</subject><subject>Covariance</subject><subject>Datasets</subject><subject>electrical conductivity</subject><subject>equations</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Generalities. Biometrics, experimentation. Remote sensing</subject><subject>geometric anisotropy</subject><subject>geostatistics</subject><subject>Kriging</subject><subject>Mathematical functions</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>residual maximum likelihood</subject><subject>rice soils</subject><subject>soil salinity</subject><subject>spatial data</subject><subject>Spatial models</subject><subject>statistical analysis</subject><subject>statistical models</subject><subject>Statistical variance</subject><issn>1085-7117</issn><issn>1537-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LxDAQxYMouK7evYi9eKzOJE2a3lyW9QO6COqCtzJN06VLbUtSD_73Zq0oeJrH_OY9mMfYOcI1YqZvELRMESF9w0wBJAdshlKkMVeZOAw64Djw9JideL8DQKGAz9jtomt8P7p-aEy0ptG6LjK9c7alsem7iLoq8kPQ1EaDs1Vjvtcfvum20fNqnZ-yo5pab89-5pxt7lavy4c4f7p_XC7y2AiFYyxImhpNaSsFOtEogXRphLAS6pQqKk1ZGq2EyoisqGQGVZkqEX5KKjLExZzBlGtc772zdTG45p3cZ4FQ7Bso_jcQLFeTZSBvqK0ddabxfz6tOWouwt3FdLfzY-9-OU9lJpXY88uJ19QXtHUhY_PCQ4MQXlE8QfEF2r9uWw</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Haskard, K.A</creator><creator>Cullis, B.R</creator><creator>Verbyla, A.P</creator><general>American Statistical Association and the International Biometric Society</general><general>American Statistical Association</general><general>International Biometric Society</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070601</creationdate><title>Anisotropic Matern correlation and spatial prediction using REML</title><author>Haskard, K.A ; Cullis, B.R ; Verbyla, A.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-3a5cf1cbed60848150a8bc33e50f7adabcbbc86369aae3d590db7638574daca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>agricultural soils</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Anisotropy</topic><topic>Biological and medical sciences</topic><topic>Biometrics, statistics, experimental designs, modeling, agricultural computer applications</topic><topic>correlation</topic><topic>Correlations</topic><topic>Covariance</topic><topic>Datasets</topic><topic>electrical conductivity</topic><topic>equations</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Generalities. Biometrics, experimentation. Remote sensing</topic><topic>geometric anisotropy</topic><topic>geostatistics</topic><topic>Kriging</topic><topic>Mathematical functions</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>residual maximum likelihood</topic><topic>rice soils</topic><topic>soil salinity</topic><topic>spatial data</topic><topic>Spatial models</topic><topic>statistical analysis</topic><topic>statistical models</topic><topic>Statistical variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haskard, K.A</creatorcontrib><creatorcontrib>Cullis, B.R</creatorcontrib><creatorcontrib>Verbyla, A.P</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haskard, K.A</au><au>Cullis, B.R</au><au>Verbyla, A.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Matern correlation and spatial prediction using REML</atitle><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle><date>2007-06-01</date><risdate>2007</risdate><volume>12</volume><issue>2</issue><spage>147</spage><epage>160</epage><pages>147-160</pages><issn>1085-7117</issn><eissn>1537-2693</eissn><abstract>The Matérn correlation function provides great flexibility for modeling spatially correlated random processes in two dimensions, in particular via a smoothness parameter, whose estimation allows data to determine the degree of smoothness of a spatial process. The extension to include anisotropy provides a very general and flexible class of spatial covariance functions that can be used in a model-based approach to geostatistics, in which parameter estimation is achieved via REML and prediction is within the E-BLUP framework. In this article we develop a general class of linear mixed models using an anisotropic Matérn class with an extended metric. The approach is illustrated by application to soil salinity data in a rice-growing field in Australia, and to fine-scale soil pH data. It is found that anisotropy is an important aspect of both datasets, emphasizing the value of a straightforward and accessible approach to modeling anisotropy.</abstract><cop>Washington, DC</cop><pub>American Statistical Association and the International Biometric Society</pub><doi>10.1198/108571107X196004</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-7117 |
ispartof | Journal of agricultural, biological, and environmental statistics, 2007-06, Vol.12 (2), p.147-160 |
issn | 1085-7117 1537-2693 |
language | eng |
recordid | cdi_crossref_primary_10_1198_108571107X196004 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; Springer Nature - Complete Springer Journals |
subjects | agricultural soils Agronomy. Soil science and plant productions Anisotropy Biological and medical sciences Biometrics, statistics, experimental designs, modeling, agricultural computer applications correlation Correlations Covariance Datasets electrical conductivity equations Fundamental and applied biological sciences. Psychology Generalities. Biometrics, experimentation. Remote sensing geometric anisotropy geostatistics Kriging Mathematical functions Modeling Parametric models residual maximum likelihood rice soils soil salinity spatial data Spatial models statistical analysis statistical models Statistical variance |
title | Anisotropic Matern correlation and spatial prediction using REML |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Matern%20correlation%20and%20spatial%20prediction%20using%20REML&rft.jtitle=Journal%20of%20agricultural,%20biological,%20and%20environmental%20statistics&rft.au=Haskard,%20K.A&rft.date=2007-06-01&rft.volume=12&rft.issue=2&rft.spage=147&rft.epage=160&rft.pages=147-160&rft.issn=1085-7117&rft.eissn=1537-2693&rft_id=info:doi/10.1198/108571107X196004&rft_dat=%3Cjstor_cross%3E27595633%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27595633&rfr_iscdi=true |