Anisotropic Matern correlation and spatial prediction using REML

The Matérn correlation function provides great flexibility for modeling spatially correlated random processes in two dimensions, in particular via a smoothness parameter, whose estimation allows data to determine the degree of smoothness of a spatial process. The extension to include anisotropy prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural, biological, and environmental statistics biological, and environmental statistics, 2007-06, Vol.12 (2), p.147-160
Hauptverfasser: Haskard, K.A, Cullis, B.R, Verbyla, A.P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue 2
container_start_page 147
container_title Journal of agricultural, biological, and environmental statistics
container_volume 12
creator Haskard, K.A
Cullis, B.R
Verbyla, A.P
description The Matérn correlation function provides great flexibility for modeling spatially correlated random processes in two dimensions, in particular via a smoothness parameter, whose estimation allows data to determine the degree of smoothness of a spatial process. The extension to include anisotropy provides a very general and flexible class of spatial covariance functions that can be used in a model-based approach to geostatistics, in which parameter estimation is achieved via REML and prediction is within the E-BLUP framework. In this article we develop a general class of linear mixed models using an anisotropic Matérn class with an extended metric. The approach is illustrated by application to soil salinity data in a rice-growing field in Australia, and to fine-scale soil pH data. It is found that anisotropy is an important aspect of both datasets, emphasizing the value of a straightforward and accessible approach to modeling anisotropy.
doi_str_mv 10.1198/108571107X196004
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1198_108571107X196004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27595633</jstor_id><sourcerecordid>27595633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-3a5cf1cbed60848150a8bc33e50f7adabcbbc86369aae3d590db7638574daca23</originalsourceid><addsrcrecordid>eNpdkM1LxDAQxYMouK7evYi9eKzOJE2a3lyW9QO6COqCtzJN06VLbUtSD_73Zq0oeJrH_OY9mMfYOcI1YqZvELRMESF9w0wBJAdshlKkMVeZOAw64Djw9JideL8DQKGAz9jtomt8P7p-aEy0ptG6LjK9c7alsem7iLoq8kPQ1EaDs1Vjvtcfvum20fNqnZ-yo5pab89-5pxt7lavy4c4f7p_XC7y2AiFYyxImhpNaSsFOtEogXRphLAS6pQqKk1ZGq2EyoisqGQGVZkqEX5KKjLExZzBlGtc772zdTG45p3cZ4FQ7Bso_jcQLFeTZSBvqK0ddabxfz6tOWouwt3FdLfzY-9-OU9lJpXY88uJ19QXtHUhY_PCQ4MQXlE8QfEF2r9uWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anisotropic Matern correlation and spatial prediction using REML</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Haskard, K.A ; Cullis, B.R ; Verbyla, A.P</creator><creatorcontrib>Haskard, K.A ; Cullis, B.R ; Verbyla, A.P</creatorcontrib><description>The Matérn correlation function provides great flexibility for modeling spatially correlated random processes in two dimensions, in particular via a smoothness parameter, whose estimation allows data to determine the degree of smoothness of a spatial process. The extension to include anisotropy provides a very general and flexible class of spatial covariance functions that can be used in a model-based approach to geostatistics, in which parameter estimation is achieved via REML and prediction is within the E-BLUP framework. In this article we develop a general class of linear mixed models using an anisotropic Matérn class with an extended metric. The approach is illustrated by application to soil salinity data in a rice-growing field in Australia, and to fine-scale soil pH data. It is found that anisotropy is an important aspect of both datasets, emphasizing the value of a straightforward and accessible approach to modeling anisotropy.</description><identifier>ISSN: 1085-7117</identifier><identifier>EISSN: 1537-2693</identifier><identifier>DOI: 10.1198/108571107X196004</identifier><language>eng</language><publisher>Washington, DC: American Statistical Association and the International Biometric Society</publisher><subject>agricultural soils ; Agronomy. Soil science and plant productions ; Anisotropy ; Biological and medical sciences ; Biometrics, statistics, experimental designs, modeling, agricultural computer applications ; correlation ; Correlations ; Covariance ; Datasets ; electrical conductivity ; equations ; Fundamental and applied biological sciences. Psychology ; Generalities. Biometrics, experimentation. Remote sensing ; geometric anisotropy ; geostatistics ; Kriging ; Mathematical functions ; Modeling ; Parametric models ; residual maximum likelihood ; rice soils ; soil salinity ; spatial data ; Spatial models ; statistical analysis ; statistical models ; Statistical variance</subject><ispartof>Journal of agricultural, biological, and environmental statistics, 2007-06, Vol.12 (2), p.147-160</ispartof><rights>Copyright 2007 American Statistical Association and the International Biometric Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-3a5cf1cbed60848150a8bc33e50f7adabcbbc86369aae3d590db7638574daca23</citedby><cites>FETCH-LOGICAL-c361t-3a5cf1cbed60848150a8bc33e50f7adabcbbc86369aae3d590db7638574daca23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27595633$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27595633$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57996,58000,58229,58233</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18821823$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Haskard, K.A</creatorcontrib><creatorcontrib>Cullis, B.R</creatorcontrib><creatorcontrib>Verbyla, A.P</creatorcontrib><title>Anisotropic Matern correlation and spatial prediction using REML</title><title>Journal of agricultural, biological, and environmental statistics</title><description>The Matérn correlation function provides great flexibility for modeling spatially correlated random processes in two dimensions, in particular via a smoothness parameter, whose estimation allows data to determine the degree of smoothness of a spatial process. The extension to include anisotropy provides a very general and flexible class of spatial covariance functions that can be used in a model-based approach to geostatistics, in which parameter estimation is achieved via REML and prediction is within the E-BLUP framework. In this article we develop a general class of linear mixed models using an anisotropic Matérn class with an extended metric. The approach is illustrated by application to soil salinity data in a rice-growing field in Australia, and to fine-scale soil pH data. It is found that anisotropy is an important aspect of both datasets, emphasizing the value of a straightforward and accessible approach to modeling anisotropy.</description><subject>agricultural soils</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Anisotropy</subject><subject>Biological and medical sciences</subject><subject>Biometrics, statistics, experimental designs, modeling, agricultural computer applications</subject><subject>correlation</subject><subject>Correlations</subject><subject>Covariance</subject><subject>Datasets</subject><subject>electrical conductivity</subject><subject>equations</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Generalities. Biometrics, experimentation. Remote sensing</subject><subject>geometric anisotropy</subject><subject>geostatistics</subject><subject>Kriging</subject><subject>Mathematical functions</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>residual maximum likelihood</subject><subject>rice soils</subject><subject>soil salinity</subject><subject>spatial data</subject><subject>Spatial models</subject><subject>statistical analysis</subject><subject>statistical models</subject><subject>Statistical variance</subject><issn>1085-7117</issn><issn>1537-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LxDAQxYMouK7evYi9eKzOJE2a3lyW9QO6COqCtzJN06VLbUtSD_73Zq0oeJrH_OY9mMfYOcI1YqZvELRMESF9w0wBJAdshlKkMVeZOAw64Djw9JideL8DQKGAz9jtomt8P7p-aEy0ptG6LjK9c7alsem7iLoq8kPQ1EaDs1Vjvtcfvum20fNqnZ-yo5pab89-5pxt7lavy4c4f7p_XC7y2AiFYyxImhpNaSsFOtEogXRphLAS6pQqKk1ZGq2EyoisqGQGVZkqEX5KKjLExZzBlGtc772zdTG45p3cZ4FQ7Bso_jcQLFeTZSBvqK0ddabxfz6tOWouwt3FdLfzY-9-OU9lJpXY88uJ19QXtHUhY_PCQ4MQXlE8QfEF2r9uWw</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Haskard, K.A</creator><creator>Cullis, B.R</creator><creator>Verbyla, A.P</creator><general>American Statistical Association and the International Biometric Society</general><general>American Statistical Association</general><general>International Biometric Society</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070601</creationdate><title>Anisotropic Matern correlation and spatial prediction using REML</title><author>Haskard, K.A ; Cullis, B.R ; Verbyla, A.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-3a5cf1cbed60848150a8bc33e50f7adabcbbc86369aae3d590db7638574daca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>agricultural soils</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Anisotropy</topic><topic>Biological and medical sciences</topic><topic>Biometrics, statistics, experimental designs, modeling, agricultural computer applications</topic><topic>correlation</topic><topic>Correlations</topic><topic>Covariance</topic><topic>Datasets</topic><topic>electrical conductivity</topic><topic>equations</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Generalities. Biometrics, experimentation. Remote sensing</topic><topic>geometric anisotropy</topic><topic>geostatistics</topic><topic>Kriging</topic><topic>Mathematical functions</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>residual maximum likelihood</topic><topic>rice soils</topic><topic>soil salinity</topic><topic>spatial data</topic><topic>Spatial models</topic><topic>statistical analysis</topic><topic>statistical models</topic><topic>Statistical variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haskard, K.A</creatorcontrib><creatorcontrib>Cullis, B.R</creatorcontrib><creatorcontrib>Verbyla, A.P</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haskard, K.A</au><au>Cullis, B.R</au><au>Verbyla, A.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Matern correlation and spatial prediction using REML</atitle><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle><date>2007-06-01</date><risdate>2007</risdate><volume>12</volume><issue>2</issue><spage>147</spage><epage>160</epage><pages>147-160</pages><issn>1085-7117</issn><eissn>1537-2693</eissn><abstract>The Matérn correlation function provides great flexibility for modeling spatially correlated random processes in two dimensions, in particular via a smoothness parameter, whose estimation allows data to determine the degree of smoothness of a spatial process. The extension to include anisotropy provides a very general and flexible class of spatial covariance functions that can be used in a model-based approach to geostatistics, in which parameter estimation is achieved via REML and prediction is within the E-BLUP framework. In this article we develop a general class of linear mixed models using an anisotropic Matérn class with an extended metric. The approach is illustrated by application to soil salinity data in a rice-growing field in Australia, and to fine-scale soil pH data. It is found that anisotropy is an important aspect of both datasets, emphasizing the value of a straightforward and accessible approach to modeling anisotropy.</abstract><cop>Washington, DC</cop><pub>American Statistical Association and the International Biometric Society</pub><doi>10.1198/108571107X196004</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1085-7117
ispartof Journal of agricultural, biological, and environmental statistics, 2007-06, Vol.12 (2), p.147-160
issn 1085-7117
1537-2693
language eng
recordid cdi_crossref_primary_10_1198_108571107X196004
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Springer Nature - Complete Springer Journals
subjects agricultural soils
Agronomy. Soil science and plant productions
Anisotropy
Biological and medical sciences
Biometrics, statistics, experimental designs, modeling, agricultural computer applications
correlation
Correlations
Covariance
Datasets
electrical conductivity
equations
Fundamental and applied biological sciences. Psychology
Generalities. Biometrics, experimentation. Remote sensing
geometric anisotropy
geostatistics
Kriging
Mathematical functions
Modeling
Parametric models
residual maximum likelihood
rice soils
soil salinity
spatial data
Spatial models
statistical analysis
statistical models
Statistical variance
title Anisotropic Matern correlation and spatial prediction using REML
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Matern%20correlation%20and%20spatial%20prediction%20using%20REML&rft.jtitle=Journal%20of%20agricultural,%20biological,%20and%20environmental%20statistics&rft.au=Haskard,%20K.A&rft.date=2007-06-01&rft.volume=12&rft.issue=2&rft.spage=147&rft.epage=160&rft.pages=147-160&rft.issn=1085-7117&rft.eissn=1537-2693&rft_id=info:doi/10.1198/108571107X196004&rft_dat=%3Cjstor_cross%3E27595633%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27595633&rfr_iscdi=true