Semiparametric Regression Analysis of Longitudinal Data With Informative Observation Times

Statistical analysis of longitudinal data has been discussed by many authors, and a number of methods have been proposed. Most of the research have focused on situations where observation times are independent of or carry no information about the response variable and therefore rely on conditional i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2005-09, Vol.100 (471), p.882-889
Hauptverfasser: Sun, Jianguo, Park, Do-Hwan, Sun, Liuquan, Zhao, Xingqiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 889
container_issue 471
container_start_page 882
container_title Journal of the American Statistical Association
container_volume 100
creator Sun, Jianguo
Park, Do-Hwan
Sun, Liuquan
Zhao, Xingqiu
description Statistical analysis of longitudinal data has been discussed by many authors, and a number of methods have been proposed. Most of the research have focused on situations where observation times are independent of or carry no information about the response variable and therefore rely on conditional inference procedures given the observation times. This article considers a different situation, where the independence assumption may not hold; that is, the observation times may carry information about the response variable. For inference, estimating equation approaches are proposed, and both large-sample and final-sample properties of the proposed methods are established. The methodology is applied to a bladder cancer study that motivated this investigation.
doi_str_mv 10.1198/016214505000000060
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1198_016214505000000060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27590620</jstor_id><sourcerecordid>27590620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-714e524a9cf9f42b7dd91e797312956ac249f26696bd7b6754d9c9d0a86754f13</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKdfQBCK4GM1SdOkefBhzH-DwUAnii8lbZOZ0TYzySb79qZ06oPgfbmX3N853BwAThG8RIhnVxBRjEgKU9gXhXtggNKExZiR130w6IA4EPwQHDm37BiWZQPw9iQbvRJWNNJbXUaPcmGlc9q00agV9dZpFxkVTU270H5d6fAW3Qgvohft36NJq4xthNcbGc0KJ-0mzEE61410x-BAidrJk10fgue72_n4IZ7O7ifj0TQuCcE-ZojIFBPBS8UVwQWrKo4k4yxBmKdUlJhwhSnltKhYQVlKKl7yCoqsmxVKhuC8911Z87GWzudLs7bhUJeHz1OU4ZQFCPdQaY1zVqp8ZXUj7DZHMO8izP9GGEQXO2fhSlErK9pSu18lgwnmiAfurOeWzhv7s8cs5ZDizue63-s-r09j6yr3Ylsb-22a_HPHF0mWjMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274618257</pqid></control><display><type>article</type><title>Semiparametric Regression Analysis of Longitudinal Data With Informative Observation Times</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Access via Taylor &amp; Francis</source><creator>Sun, Jianguo ; Park, Do-Hwan ; Sun, Liuquan ; Zhao, Xingqiu</creator><creatorcontrib>Sun, Jianguo ; Park, Do-Hwan ; Sun, Liuquan ; Zhao, Xingqiu</creatorcontrib><description>Statistical analysis of longitudinal data has been discussed by many authors, and a number of methods have been proposed. Most of the research have focused on situations where observation times are independent of or carry no information about the response variable and therefore rely on conditional inference procedures given the observation times. This article considers a different situation, where the independence assumption may not hold; that is, the observation times may carry information about the response variable. For inference, estimating equation approaches are proposed, and both large-sample and final-sample properties of the proposed methods are established. The methodology is applied to a bladder cancer study that motivated this investigation.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1198/016214505000000060</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor &amp; Francis</publisher><subject>Consistent estimators ; Estimating equation ; Estimation bias ; Estimation methods ; Exact sciences and technology ; Inference ; Informative observation times ; Linear inference, regression ; Longitudinal data ; Mathematics ; Modeling ; Nonhomogeneous poisson process ; Nonparametric inference ; Observational research ; Poisson distribution ; Probability and statistics ; Probability theory and stochastic processes ; Regression analysis ; School dropouts ; Sciences and techniques of general use ; Statistical analysis ; Statistics ; Stochastic processes ; Theory and Methods ; Tumors ; Urinary bladder</subject><ispartof>Journal of the American Statistical Association, 2005-09, Vol.100 (471), p.882-889</ispartof><rights>American Statistical Association 2005</rights><rights>Copyright 2005 American Statistical Association</rights><rights>2005 INIST-CNRS</rights><rights>Copyright American Statistical Association Sep 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-714e524a9cf9f42b7dd91e797312956ac249f26696bd7b6754d9c9d0a86754f13</citedby><cites>FETCH-LOGICAL-c442t-714e524a9cf9f42b7dd91e797312956ac249f26696bd7b6754d9c9d0a86754f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27590620$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27590620$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17032919$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Jianguo</creatorcontrib><creatorcontrib>Park, Do-Hwan</creatorcontrib><creatorcontrib>Sun, Liuquan</creatorcontrib><creatorcontrib>Zhao, Xingqiu</creatorcontrib><title>Semiparametric Regression Analysis of Longitudinal Data With Informative Observation Times</title><title>Journal of the American Statistical Association</title><description>Statistical analysis of longitudinal data has been discussed by many authors, and a number of methods have been proposed. Most of the research have focused on situations where observation times are independent of or carry no information about the response variable and therefore rely on conditional inference procedures given the observation times. This article considers a different situation, where the independence assumption may not hold; that is, the observation times may carry information about the response variable. For inference, estimating equation approaches are proposed, and both large-sample and final-sample properties of the proposed methods are established. The methodology is applied to a bladder cancer study that motivated this investigation.</description><subject>Consistent estimators</subject><subject>Estimating equation</subject><subject>Estimation bias</subject><subject>Estimation methods</subject><subject>Exact sciences and technology</subject><subject>Inference</subject><subject>Informative observation times</subject><subject>Linear inference, regression</subject><subject>Longitudinal data</subject><subject>Mathematics</subject><subject>Modeling</subject><subject>Nonhomogeneous poisson process</subject><subject>Nonparametric inference</subject><subject>Observational research</subject><subject>Poisson distribution</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Regression analysis</subject><subject>School dropouts</subject><subject>Sciences and techniques of general use</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Theory and Methods</subject><subject>Tumors</subject><subject>Urinary bladder</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kF9LwzAUxYMoOKdfQBCK4GM1SdOkefBhzH-DwUAnii8lbZOZ0TYzySb79qZ06oPgfbmX3N853BwAThG8RIhnVxBRjEgKU9gXhXtggNKExZiR130w6IA4EPwQHDm37BiWZQPw9iQbvRJWNNJbXUaPcmGlc9q00agV9dZpFxkVTU270H5d6fAW3Qgvohft36NJq4xthNcbGc0KJ-0mzEE61410x-BAidrJk10fgue72_n4IZ7O7ifj0TQuCcE-ZojIFBPBS8UVwQWrKo4k4yxBmKdUlJhwhSnltKhYQVlKKl7yCoqsmxVKhuC8911Z87GWzudLs7bhUJeHz1OU4ZQFCPdQaY1zVqp8ZXUj7DZHMO8izP9GGEQXO2fhSlErK9pSu18lgwnmiAfurOeWzhv7s8cs5ZDizue63-s-r09j6yr3Ylsb-22a_HPHF0mWjMo</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Sun, Jianguo</creator><creator>Park, Do-Hwan</creator><creator>Sun, Liuquan</creator><creator>Zhao, Xingqiu</creator><general>Taylor &amp; Francis</general><general>American Statistical Association</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20050901</creationdate><title>Semiparametric Regression Analysis of Longitudinal Data With Informative Observation Times</title><author>Sun, Jianguo ; Park, Do-Hwan ; Sun, Liuquan ; Zhao, Xingqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-714e524a9cf9f42b7dd91e797312956ac249f26696bd7b6754d9c9d0a86754f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Consistent estimators</topic><topic>Estimating equation</topic><topic>Estimation bias</topic><topic>Estimation methods</topic><topic>Exact sciences and technology</topic><topic>Inference</topic><topic>Informative observation times</topic><topic>Linear inference, regression</topic><topic>Longitudinal data</topic><topic>Mathematics</topic><topic>Modeling</topic><topic>Nonhomogeneous poisson process</topic><topic>Nonparametric inference</topic><topic>Observational research</topic><topic>Poisson distribution</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Regression analysis</topic><topic>School dropouts</topic><topic>Sciences and techniques of general use</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Theory and Methods</topic><topic>Tumors</topic><topic>Urinary bladder</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jianguo</creatorcontrib><creatorcontrib>Park, Do-Hwan</creatorcontrib><creatorcontrib>Sun, Liuquan</creatorcontrib><creatorcontrib>Zhao, Xingqiu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jianguo</au><au>Park, Do-Hwan</au><au>Sun, Liuquan</au><au>Zhao, Xingqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiparametric Regression Analysis of Longitudinal Data With Informative Observation Times</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2005-09-01</date><risdate>2005</risdate><volume>100</volume><issue>471</issue><spage>882</spage><epage>889</epage><pages>882-889</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>Statistical analysis of longitudinal data has been discussed by many authors, and a number of methods have been proposed. Most of the research have focused on situations where observation times are independent of or carry no information about the response variable and therefore rely on conditional inference procedures given the observation times. This article considers a different situation, where the independence assumption may not hold; that is, the observation times may carry information about the response variable. For inference, estimating equation approaches are proposed, and both large-sample and final-sample properties of the proposed methods are established. The methodology is applied to a bladder cancer study that motivated this investigation.</abstract><cop>Alexandria, VA</cop><pub>Taylor &amp; Francis</pub><doi>10.1198/016214505000000060</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2005-09, Vol.100 (471), p.882-889
issn 0162-1459
1537-274X
language eng
recordid cdi_crossref_primary_10_1198_016214505000000060
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Access via Taylor & Francis
subjects Consistent estimators
Estimating equation
Estimation bias
Estimation methods
Exact sciences and technology
Inference
Informative observation times
Linear inference, regression
Longitudinal data
Mathematics
Modeling
Nonhomogeneous poisson process
Nonparametric inference
Observational research
Poisson distribution
Probability and statistics
Probability theory and stochastic processes
Regression analysis
School dropouts
Sciences and techniques of general use
Statistical analysis
Statistics
Stochastic processes
Theory and Methods
Tumors
Urinary bladder
title Semiparametric Regression Analysis of Longitudinal Data With Informative Observation Times
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiparametric%20Regression%20Analysis%20of%20Longitudinal%20Data%20With%20Informative%20Observation%20Times&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Sun,%20Jianguo&rft.date=2005-09-01&rft.volume=100&rft.issue=471&rft.spage=882&rft.epage=889&rft.pages=882-889&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1198/016214505000000060&rft_dat=%3Cjstor_cross%3E27590620%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274618257&rft_id=info:pmid/&rft_jstor_id=27590620&rfr_iscdi=true