Inhibition of carrageenan-induced dental inflammatory responses owing to decreased TRPV1 activity by Dexmedetomidine

Background Dexmedetomidine (Dex) is a highly selective agonist of the alpha 2 adrenergic receptor and a common sedative; however, its anti-inflammatory effect has been studied. In this study, the inhibitory effect of Dex on inflammation in dental pulp cells was assessed. For this, the effect of Dex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inflammation (London, England) England), 2020-05, Vol.17 (1), p.18-18, Article 18
Hauptverfasser: Lv, Gang, Zhu, Guanhua, Xu, Maohua, Gao, Xingping, Xiao, Qingfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Dexmedetomidine (Dex) is a highly selective agonist of the alpha 2 adrenergic receptor and a common sedative; however, its anti-inflammatory effect has been studied. In this study, the inhibitory effect of Dex on inflammation in dental pulp cells was assessed. For this, the effect of Dex on inflammation induced by carrageenan (Car) in human dental pulp cells (hDPCs) was evaluated. Car incubation induced a robust inflammatory response in hDPCs as well as activation of PKA-STAT3 and PKC-nuclear factor kappa B (NF-kappa B) signaling pathways. Results Dex reduced the expression of inflammatory cytokines in a dose-dependent manner. Meanwhile, the phosphorylation of PKA, PKC, STAT3, and NF-kappa B as well as the nuclear accumulation of STAT3 and NF-kappa B were significantly increased in Dex-treated Car-induced hDPCs. Western blotting results also showed that the phosphorylation level of transient receptor potential cation channel subfamily V member 1 (TRPV1) was downregulated as a result of Dex treatment. Furthermore, we found that administration of the TRPV1 agonist capsaicin (Cap) reversed the effects of Dex on proinflammatory cytokines; however, the expression and activation of PKA-STAT3 and PKC-NF-kappa B signals were not altered owing to Cap administration. Conclusions These results indicate that Dex plays a defensive role in dental pulp inflammation by regulating the TRPV1 channel and can be used as a potential target for human dental pulp inflammation intervention.
ISSN:1476-9255
1476-9255
DOI:10.1186/s12950-020-00245-5