Elucidating the Role of Tolerogenic Dendritic Cells in Immune Tolerance and Disease Progression in Multiple Myeloma

Introduction: Previous research has demonstrated that programmed death-ligand 1 (PD-L1) in multiple myeloma (MM) cells not only suppresses anti-tumor immune responses but also enhances malignant potential through the PD-L1-PD-1 interaction [Ishibashi M, et al. Cancer Immunol Res. 2016]. However, it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2023-11, Vol.142 (Supplement 1), p.6596-6596
Hauptverfasser: Ishibashi, Mariko, Sunakawa-Kii, Mika, Yamaguchi, Hiroki, Morita, Rimpei, Tamura, Hideto
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction: Previous research has demonstrated that programmed death-ligand 1 (PD-L1) in multiple myeloma (MM) cells not only suppresses anti-tumor immune responses but also enhances malignant potential through the PD-L1-PD-1 interaction [Ishibashi M, et al. Cancer Immunol Res. 2016]. However, it has not yet been shown that monotherapy and combination therapies utilizing PD-1/PD-L1 antibodies are sufficiently effective for MM. One reason for this is the absence of myeloma-specific cytotoxic T lymphocytes induction in the MM tumor microenvironment. In certain cancers, tumor-infiltrating dendritic cells (DCs) undergo conversion into tolerogenic DCs, which are crucial for inducing and maintaining T-cell tolerance, although this remains unclear in MM. Thus, this study aimed to investigate the function and induction mechanisms of tolerogenic DCs in the MM microenvironment. Materials and Methods: (1) Flow cytometry (FCM) was employed to assess the two conventional DC (cDC; lineage negative, HLA-DR +CD11c high) subsets, cDC1 (CD141 + cDC) and cDC2 (CD1c + cDC), in bone marrow (BM) samples obtained from MM patients (n=17) and healthy controls (n=13). (2) CD14 + monocytes were cultured with IL-4 and GM-CSF to generate monocyte-derived DCs (moDCs). Simultaneously, moDCs were co-cultured with MM cell lines using a trans-well system. The characteristics and functions of moDCs were analyzed using real-time PCR, RNA-sequencing (RNA-seq), western blotting, ELISA, and FCM after lipopolysaccharide stimulation. Results: The frequency of cDC1 subsets was significantly lower in MM patients compared to controls, while the major cDC2 subset did not differ. Similarly, when moDCs were co-cultured with MM cells, moDC numbers were markedly reduced. These co-cultured moDCs exhibited downregulated expression of activation markers CD80, CD86, and CD83, along with decreased phosphorylation of ERK and S6K. Conversely, these moDCs upregulated the expression of immunosuppressive factors IL-10, ARG1, and NOS2 through increased transcription factor C/EBPβ. Moreover, these moDCs inhibited T-cell proliferation, activation, and interferon-γ production in comparison to control moDCs, indicating the presence of immature and tolerogenic phenotypes. However, these phenotypes were not observed in moDCs co-cultured with soluble factors secreted from MM and stromal cells. Treatment with AZD3965 improved the phenotype of moDCs co-cultured with MM cells, reversing their suppressive effect on T-cell p
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2023-179078