AMPK Reprograms Gene Expression and Promotes Adaptation/Survival in Response to Metabolic Stress through Binding to a Chromatin-Associated Transcription Complex in Acute Lymphoblastic Leukemia

Survival rates for relapsed/refractory acute lymphoblastic leukemia (ALL), the most common cancer in children and adolescents, remain dismal. We and others have reported that ALL cells are vulnerable to conditions inducing energy/ER-stress mediated by AMP-activated protein kinase (AMPK) activation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2021-11, Vol.138 (Supplement 1), p.3299-3299
Hauptverfasser: Sun, Guangyan, Leclerc, Guy Jacques, Shvab, Anna, Barredo, Julio C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Survival rates for relapsed/refractory acute lymphoblastic leukemia (ALL), the most common cancer in children and adolescents, remain dismal. We and others have reported that ALL cells are vulnerable to conditions inducing energy/ER-stress mediated by AMP-activated protein kinase (AMPK) activation. AMPK has been reported to interact with chromatin-associated proteins (e.g., histone H2B) in MEF cells to epigenetically regulate gene expression in response to environmental/cellular stress (Bungard et al. Science, 2010; 329:1201). To identify genome-wide genes regulated by direct association of AMPK to chromatin in response to energy/metabolic stress, we first constructed Bp-ALL (NALM6, REH) and T-ALL (CCRF-CEM, KE-37) stable cell lines expressing HA-AMPKα1 or HA-AMPKα2. Next, using HA and RNA pol II antibodies, we performed ChIP-seq assays in CCRF-CEM/HA-AMPKα2 (CN2) grown in glucose-free RPMI for 24 h. ChIP-seq differentially identified 171 candidate genes in CN2 treated with no-glucose vs. 431 genes in untreated controls. Data analysis using the Encode and ChEA database identified the TATA-Box Binding Protein Associated Factor, CCAAT Enhancer Binding Protein Delta (CEBPD), the negative elongation factor complex member E (NELFE), and the Promyelocytic leukemia protein (PML) among highly ranked transcription factors (TFs) may associated with AMPKα2 on chromatin. To correlate the level of gene mRNA expression and recruitment of AMPKα2 to chromatin gene loci regulated in response to energy/metabolic stress, we performed RNA-seq assays in CN2 cells treated with or without glucose deprivation for 24 h. RNA-seq data analysis indicated that of the 3497 genes altered by AMPK activation, two thirds were downregulated whereas the remaining were upregulated. Kyoto Encyclopedia of Genes and Genomes gene set and BioPlanet 2019 gene set analysis identified metabolic pathways, DNA replication/metabolism, and cell cycle as the main biological processes altered in CN2 cells in response to metabolic stress. Among downregulated genes in response to metabolic stress, we uncovered a cluster of histone genes. To confirm and validate our data, we used RT-qPCR and ChIP-qPCR assays on selected histone gene candidates (H1-2/ HIST1H1C, H1-3/HIST1H1D, H4C4/HIST1H4D) which exhibited both decreased recruitment of HA-AMPKα2 to chromatin and mRNA downregulation in response to metabolic stress. Further ChIP-qPCR assays using an AMPKα2 antibody confirmed these data in KASUMI-2 cells (Bp-ALL)
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2021-151145