PGE2 Dependent Inhibition of Macrophage Pyroptosis By MSCs Contributes to Alleviating aGVHD

Introduction Mesenchymal stem cells (MSCs) are being recognized as one of the treatment options for acute graft versus host disease (aGVHD), but their therapeutic mechanisms have not been fully elucidated. Pyroptosis, a novel form of inflammation related programmed cell death, often occurs in myeloi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2020-11, Vol.136 (Supplement 1), p.15-15
Hauptverfasser: Sun, Xueyan, Su, Yan, Liu, Xiao, Liu, Fengqi, Zhang, Gaochao, Chen, Qi, Wang, Chencong, Fu, Haixia, Zhu, Xiaolu, Liu, Kaiyan, Zhang, Xiaohui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue Supplement 1
container_start_page 15
container_title Blood
container_volume 136
creator Sun, Xueyan
Su, Yan
Liu, Xiao
Liu, Fengqi
Zhang, Gaochao
Chen, Qi
Wang, Chencong
Fu, Haixia
Zhu, Xiaolu
Liu, Kaiyan
Zhang, Xiaohui
description Introduction Mesenchymal stem cells (MSCs) are being recognized as one of the treatment options for acute graft versus host disease (aGVHD), but their therapeutic mechanisms have not been fully elucidated. Pyroptosis, a novel form of inflammation related programmed cell death, often occurs in myeloid cells. Many studies have found that macrophage pyroptosis plays an important role in multiple inflammatory and autoimmune diseases (Journal of Autoimmunity, 2018). As an immune disease with involvement of various inflammatory factors, aGVHD exhibits macrophage dysfunction according to our previous study (Sci China Life Sci, 2020). However, whether macrophages undergo pyroptosis and their role in aGVHD remain unknown. MSCs have been reported to inhibit pyroptosis, and some cytokines that suppress pyroptosis can also be secreted by MSCs (Nature Immunology, 2016). Whether inhibition of macrophage pyroptosis represents a therapeutic mechanism for MSCs to alleviate aGVHD needs further exploration. Methods Twenty patients with aGVHD and 20 patients without aGVHD after hematopoietic stem cell transplantation were enrolled in our study. Macrophages were derived from CD14+ monocytes of patients and the THP-1 cell line. CD4+ T cells were isolated from peripheral blood mononuclear cells (PBMCs) of healthy volunteers. MSCs were obtained from fresh umbilical cord of healthy puerpera. Morphological analysis of macrophages was performed by scanning electron microscopy. Expression of GSDMD and NLRP3 inflammasome associated components was assessed by real-time transcription-polymerase chain reaction (RT-PCR), western blot and immunofluorescent staining. The subgroup of CD4+T cells was analyzed by flow cytometry. RT-PCR, ELISA and RNA interference were used to evaluate relevant immunomodulatory factors which were involved in the inhibitory effect of MSCs on macrophage pyroptosis. Additionally, an aGVHD mouse model was established to observe the therapeutic effect and mechanism of MSCs on macrophage pyroptosis. Results Scanning electron microscopy images showed the formation of membrane pores in macrophages of aGVHD patients. Meanwhile, expression of the pyroptosis executioner GSDMD, NLRP3 inflammasome associated components, IL-1β, IL-18, and LDH release were elevated in macrophages from aGVHD patients, indicating that macrophages in aGVHD underwent NLRP3 inflammasome activation and pyroptosis. Furthermore, NLRP3 inhibition reduced macrophages pyroptosis, suggesting that macroph
doi_str_mv 10.1182/blood-2020-138388
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1182_blood_2020_138388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497118724336</els_id><sourcerecordid>S0006497118724336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1858-13a8ac8ff2aee0f6c449d145c077716e6cf0b872ade77b4464719590accfdb9d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMoWKs_wFv-wGqSzW6yeKptbQstFvy4eAjZZNJG1k3ZxEL_vVvr2dMMA294PIRuKbmjVLL7ugnBZowwktFc5lKeoQEtmMxIfzpHA0JImfFK0Et0FeMnIZTnrBigj_VsyvAEdtBaaBNetFtf--RDi4PDK226sNvqDeD1od9SiD7ixwNevYwjHoc2db7-ThBxCnjUNLD3Ovl2g_XsfT65RhdONxFu_uYQvT1NX8fzbPk8W4xHy8xQWcjeV0ttpHNMAxBXGs4rS3lhiBCCllAaR2opmLYgRM15yQWtiopoY5ytK5sPET397WVj7MCpXee_dHdQlKhjHfVbRx3rqFOdnnk4MdCL7T10KhoPrQHrOzBJ2eD_oX8AFMZtVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PGE2 Dependent Inhibition of Macrophage Pyroptosis By MSCs Contributes to Alleviating aGVHD</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Sun, Xueyan ; Su, Yan ; Liu, Xiao ; Liu, Fengqi ; Zhang, Gaochao ; Chen, Qi ; Wang, Chencong ; Fu, Haixia ; Zhu, Xiaolu ; Liu, Kaiyan ; Zhang, Xiaohui</creator><creatorcontrib>Sun, Xueyan ; Su, Yan ; Liu, Xiao ; Liu, Fengqi ; Zhang, Gaochao ; Chen, Qi ; Wang, Chencong ; Fu, Haixia ; Zhu, Xiaolu ; Liu, Kaiyan ; Zhang, Xiaohui</creatorcontrib><description>Introduction Mesenchymal stem cells (MSCs) are being recognized as one of the treatment options for acute graft versus host disease (aGVHD), but their therapeutic mechanisms have not been fully elucidated. Pyroptosis, a novel form of inflammation related programmed cell death, often occurs in myeloid cells. Many studies have found that macrophage pyroptosis plays an important role in multiple inflammatory and autoimmune diseases (Journal of Autoimmunity, 2018). As an immune disease with involvement of various inflammatory factors, aGVHD exhibits macrophage dysfunction according to our previous study (Sci China Life Sci, 2020). However, whether macrophages undergo pyroptosis and their role in aGVHD remain unknown. MSCs have been reported to inhibit pyroptosis, and some cytokines that suppress pyroptosis can also be secreted by MSCs (Nature Immunology, 2016). Whether inhibition of macrophage pyroptosis represents a therapeutic mechanism for MSCs to alleviate aGVHD needs further exploration. Methods Twenty patients with aGVHD and 20 patients without aGVHD after hematopoietic stem cell transplantation were enrolled in our study. Macrophages were derived from CD14+ monocytes of patients and the THP-1 cell line. CD4+ T cells were isolated from peripheral blood mononuclear cells (PBMCs) of healthy volunteers. MSCs were obtained from fresh umbilical cord of healthy puerpera. Morphological analysis of macrophages was performed by scanning electron microscopy. Expression of GSDMD and NLRP3 inflammasome associated components was assessed by real-time transcription-polymerase chain reaction (RT-PCR), western blot and immunofluorescent staining. The subgroup of CD4+T cells was analyzed by flow cytometry. RT-PCR, ELISA and RNA interference were used to evaluate relevant immunomodulatory factors which were involved in the inhibitory effect of MSCs on macrophage pyroptosis. Additionally, an aGVHD mouse model was established to observe the therapeutic effect and mechanism of MSCs on macrophage pyroptosis. Results Scanning electron microscopy images showed the formation of membrane pores in macrophages of aGVHD patients. Meanwhile, expression of the pyroptosis executioner GSDMD, NLRP3 inflammasome associated components, IL-1β, IL-18, and LDH release were elevated in macrophages from aGVHD patients, indicating that macrophages in aGVHD underwent NLRP3 inflammasome activation and pyroptosis. Furthermore, NLRP3 inhibition reduced macrophages pyroptosis, suggesting that macrophages pyroptosis in aGVHD are mediated by NLRP3 inflammasome activation. Since CD4+T cells play a critical role in the pathogenesis of aGVHD, we investigated the effect of macrophage pyroptosis on CD4+T cells. In vitro, macrophage pyroptosis increased the proportion of CD69+, Th1 and Th17 cells among CD4+T cells, which was partially reversed by blocking IL-1β/IL-1R and IL-18/IL-18R signaling. We also observed that the proportion of macrophage pyroptosis was more increased in patients with III-IV aGVHD than in those with I-II aGVHD. In addition, administration of a pyroptosis inhibitor into aGVHD model mice greatly attenuated clinical and histopathological scores. Taken together, these results indicate that macrophage pyroptosis might be involved the development of aGVHD. Expression of GSDMD, NLRP3 inflammasome associated components, IL-1β, IL-18, and LDH release in aGVHD macrophages were reduced when cells were cocultured with MSCs, indicating that MSCs inhibit aGVHD macrophage pyroptosis by suppressing NLRP3 inflammasome activation. Furthermore, secretion of prostaglandin E2 (PGE2) was increased in MSCs cocultured with aGVHD macrophages, blocking which by small interfering RNA (siRNA) or inhibition of PGE2 induced CAMP-PKA signaling with antagonists both largely abrogated MSC effects. Consistently, the effect of MSCs on macrophage pyroptosis and the NLRP3 inflammasome in vivo was also dampened after transfection with prostaglandin E synthase (PTGES) siRNA, and the therapeutic effect in the aGVHD mouse model was impaired. Conclusions Our results demonstrate that macrophage pyroptosis plays a crucial role in the pathogenesis of aGVHD by promoting activation and differentiation of CD4+ T cells. MSCs suppress macrophage pyroptosis in aGVHD via PGE2/cAMP/PKA signaling, which might represent a therapeutic mechanism of MSCs for aGVHD. No relevant conflicts of interest to declare.</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood-2020-138388</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Blood, 2020-11, Vol.136 (Supplement 1), p.15-15</ispartof><rights>2020 American Society of Hematology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1858-13a8ac8ff2aee0f6c449d145c077716e6cf0b872ade77b4464719590accfdb9d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sun, Xueyan</creatorcontrib><creatorcontrib>Su, Yan</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Liu, Fengqi</creatorcontrib><creatorcontrib>Zhang, Gaochao</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><creatorcontrib>Wang, Chencong</creatorcontrib><creatorcontrib>Fu, Haixia</creatorcontrib><creatorcontrib>Zhu, Xiaolu</creatorcontrib><creatorcontrib>Liu, Kaiyan</creatorcontrib><creatorcontrib>Zhang, Xiaohui</creatorcontrib><title>PGE2 Dependent Inhibition of Macrophage Pyroptosis By MSCs Contributes to Alleviating aGVHD</title><title>Blood</title><description>Introduction Mesenchymal stem cells (MSCs) are being recognized as one of the treatment options for acute graft versus host disease (aGVHD), but their therapeutic mechanisms have not been fully elucidated. Pyroptosis, a novel form of inflammation related programmed cell death, often occurs in myeloid cells. Many studies have found that macrophage pyroptosis plays an important role in multiple inflammatory and autoimmune diseases (Journal of Autoimmunity, 2018). As an immune disease with involvement of various inflammatory factors, aGVHD exhibits macrophage dysfunction according to our previous study (Sci China Life Sci, 2020). However, whether macrophages undergo pyroptosis and their role in aGVHD remain unknown. MSCs have been reported to inhibit pyroptosis, and some cytokines that suppress pyroptosis can also be secreted by MSCs (Nature Immunology, 2016). Whether inhibition of macrophage pyroptosis represents a therapeutic mechanism for MSCs to alleviate aGVHD needs further exploration. Methods Twenty patients with aGVHD and 20 patients without aGVHD after hematopoietic stem cell transplantation were enrolled in our study. Macrophages were derived from CD14+ monocytes of patients and the THP-1 cell line. CD4+ T cells were isolated from peripheral blood mononuclear cells (PBMCs) of healthy volunteers. MSCs were obtained from fresh umbilical cord of healthy puerpera. Morphological analysis of macrophages was performed by scanning electron microscopy. Expression of GSDMD and NLRP3 inflammasome associated components was assessed by real-time transcription-polymerase chain reaction (RT-PCR), western blot and immunofluorescent staining. The subgroup of CD4+T cells was analyzed by flow cytometry. RT-PCR, ELISA and RNA interference were used to evaluate relevant immunomodulatory factors which were involved in the inhibitory effect of MSCs on macrophage pyroptosis. Additionally, an aGVHD mouse model was established to observe the therapeutic effect and mechanism of MSCs on macrophage pyroptosis. Results Scanning electron microscopy images showed the formation of membrane pores in macrophages of aGVHD patients. Meanwhile, expression of the pyroptosis executioner GSDMD, NLRP3 inflammasome associated components, IL-1β, IL-18, and LDH release were elevated in macrophages from aGVHD patients, indicating that macrophages in aGVHD underwent NLRP3 inflammasome activation and pyroptosis. Furthermore, NLRP3 inhibition reduced macrophages pyroptosis, suggesting that macrophages pyroptosis in aGVHD are mediated by NLRP3 inflammasome activation. Since CD4+T cells play a critical role in the pathogenesis of aGVHD, we investigated the effect of macrophage pyroptosis on CD4+T cells. In vitro, macrophage pyroptosis increased the proportion of CD69+, Th1 and Th17 cells among CD4+T cells, which was partially reversed by blocking IL-1β/IL-1R and IL-18/IL-18R signaling. We also observed that the proportion of macrophage pyroptosis was more increased in patients with III-IV aGVHD than in those with I-II aGVHD. In addition, administration of a pyroptosis inhibitor into aGVHD model mice greatly attenuated clinical and histopathological scores. Taken together, these results indicate that macrophage pyroptosis might be involved the development of aGVHD. Expression of GSDMD, NLRP3 inflammasome associated components, IL-1β, IL-18, and LDH release in aGVHD macrophages were reduced when cells were cocultured with MSCs, indicating that MSCs inhibit aGVHD macrophage pyroptosis by suppressing NLRP3 inflammasome activation. Furthermore, secretion of prostaglandin E2 (PGE2) was increased in MSCs cocultured with aGVHD macrophages, blocking which by small interfering RNA (siRNA) or inhibition of PGE2 induced CAMP-PKA signaling with antagonists both largely abrogated MSC effects. Consistently, the effect of MSCs on macrophage pyroptosis and the NLRP3 inflammasome in vivo was also dampened after transfection with prostaglandin E synthase (PTGES) siRNA, and the therapeutic effect in the aGVHD mouse model was impaired. Conclusions Our results demonstrate that macrophage pyroptosis plays a crucial role in the pathogenesis of aGVHD by promoting activation and differentiation of CD4+ T cells. MSCs suppress macrophage pyroptosis in aGVHD via PGE2/cAMP/PKA signaling, which might represent a therapeutic mechanism of MSCs for aGVHD. No relevant conflicts of interest to declare.</description><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQQIMoWKs_wFv-wGqSzW6yeKptbQstFvy4eAjZZNJG1k3ZxEL_vVvr2dMMA294PIRuKbmjVLL7ugnBZowwktFc5lKeoQEtmMxIfzpHA0JImfFK0Et0FeMnIZTnrBigj_VsyvAEdtBaaBNetFtf--RDi4PDK226sNvqDeD1od9SiD7ixwNevYwjHoc2db7-ThBxCnjUNLD3Ovl2g_XsfT65RhdONxFu_uYQvT1NX8fzbPk8W4xHy8xQWcjeV0ttpHNMAxBXGs4rS3lhiBCCllAaR2opmLYgRM15yQWtiopoY5ytK5sPET397WVj7MCpXee_dHdQlKhjHfVbRx3rqFOdnnk4MdCL7T10KhoPrQHrOzBJ2eD_oX8AFMZtVQ</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>Sun, Xueyan</creator><creator>Su, Yan</creator><creator>Liu, Xiao</creator><creator>Liu, Fengqi</creator><creator>Zhang, Gaochao</creator><creator>Chen, Qi</creator><creator>Wang, Chencong</creator><creator>Fu, Haixia</creator><creator>Zhu, Xiaolu</creator><creator>Liu, Kaiyan</creator><creator>Zhang, Xiaohui</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201105</creationdate><title>PGE2 Dependent Inhibition of Macrophage Pyroptosis By MSCs Contributes to Alleviating aGVHD</title><author>Sun, Xueyan ; Su, Yan ; Liu, Xiao ; Liu, Fengqi ; Zhang, Gaochao ; Chen, Qi ; Wang, Chencong ; Fu, Haixia ; Zhu, Xiaolu ; Liu, Kaiyan ; Zhang, Xiaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1858-13a8ac8ff2aee0f6c449d145c077716e6cf0b872ade77b4464719590accfdb9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xueyan</creatorcontrib><creatorcontrib>Su, Yan</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Liu, Fengqi</creatorcontrib><creatorcontrib>Zhang, Gaochao</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><creatorcontrib>Wang, Chencong</creatorcontrib><creatorcontrib>Fu, Haixia</creatorcontrib><creatorcontrib>Zhu, Xiaolu</creatorcontrib><creatorcontrib>Liu, Kaiyan</creatorcontrib><creatorcontrib>Zhang, Xiaohui</creatorcontrib><collection>CrossRef</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xueyan</au><au>Su, Yan</au><au>Liu, Xiao</au><au>Liu, Fengqi</au><au>Zhang, Gaochao</au><au>Chen, Qi</au><au>Wang, Chencong</au><au>Fu, Haixia</au><au>Zhu, Xiaolu</au><au>Liu, Kaiyan</au><au>Zhang, Xiaohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PGE2 Dependent Inhibition of Macrophage Pyroptosis By MSCs Contributes to Alleviating aGVHD</atitle><jtitle>Blood</jtitle><date>2020-11-05</date><risdate>2020</risdate><volume>136</volume><issue>Supplement 1</issue><spage>15</spage><epage>15</epage><pages>15-15</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>Introduction Mesenchymal stem cells (MSCs) are being recognized as one of the treatment options for acute graft versus host disease (aGVHD), but their therapeutic mechanisms have not been fully elucidated. Pyroptosis, a novel form of inflammation related programmed cell death, often occurs in myeloid cells. Many studies have found that macrophage pyroptosis plays an important role in multiple inflammatory and autoimmune diseases (Journal of Autoimmunity, 2018). As an immune disease with involvement of various inflammatory factors, aGVHD exhibits macrophage dysfunction according to our previous study (Sci China Life Sci, 2020). However, whether macrophages undergo pyroptosis and their role in aGVHD remain unknown. MSCs have been reported to inhibit pyroptosis, and some cytokines that suppress pyroptosis can also be secreted by MSCs (Nature Immunology, 2016). Whether inhibition of macrophage pyroptosis represents a therapeutic mechanism for MSCs to alleviate aGVHD needs further exploration. Methods Twenty patients with aGVHD and 20 patients without aGVHD after hematopoietic stem cell transplantation were enrolled in our study. Macrophages were derived from CD14+ monocytes of patients and the THP-1 cell line. CD4+ T cells were isolated from peripheral blood mononuclear cells (PBMCs) of healthy volunteers. MSCs were obtained from fresh umbilical cord of healthy puerpera. Morphological analysis of macrophages was performed by scanning electron microscopy. Expression of GSDMD and NLRP3 inflammasome associated components was assessed by real-time transcription-polymerase chain reaction (RT-PCR), western blot and immunofluorescent staining. The subgroup of CD4+T cells was analyzed by flow cytometry. RT-PCR, ELISA and RNA interference were used to evaluate relevant immunomodulatory factors which were involved in the inhibitory effect of MSCs on macrophage pyroptosis. Additionally, an aGVHD mouse model was established to observe the therapeutic effect and mechanism of MSCs on macrophage pyroptosis. Results Scanning electron microscopy images showed the formation of membrane pores in macrophages of aGVHD patients. Meanwhile, expression of the pyroptosis executioner GSDMD, NLRP3 inflammasome associated components, IL-1β, IL-18, and LDH release were elevated in macrophages from aGVHD patients, indicating that macrophages in aGVHD underwent NLRP3 inflammasome activation and pyroptosis. Furthermore, NLRP3 inhibition reduced macrophages pyroptosis, suggesting that macrophages pyroptosis in aGVHD are mediated by NLRP3 inflammasome activation. Since CD4+T cells play a critical role in the pathogenesis of aGVHD, we investigated the effect of macrophage pyroptosis on CD4+T cells. In vitro, macrophage pyroptosis increased the proportion of CD69+, Th1 and Th17 cells among CD4+T cells, which was partially reversed by blocking IL-1β/IL-1R and IL-18/IL-18R signaling. We also observed that the proportion of macrophage pyroptosis was more increased in patients with III-IV aGVHD than in those with I-II aGVHD. In addition, administration of a pyroptosis inhibitor into aGVHD model mice greatly attenuated clinical and histopathological scores. Taken together, these results indicate that macrophage pyroptosis might be involved the development of aGVHD. Expression of GSDMD, NLRP3 inflammasome associated components, IL-1β, IL-18, and LDH release in aGVHD macrophages were reduced when cells were cocultured with MSCs, indicating that MSCs inhibit aGVHD macrophage pyroptosis by suppressing NLRP3 inflammasome activation. Furthermore, secretion of prostaglandin E2 (PGE2) was increased in MSCs cocultured with aGVHD macrophages, blocking which by small interfering RNA (siRNA) or inhibition of PGE2 induced CAMP-PKA signaling with antagonists both largely abrogated MSC effects. Consistently, the effect of MSCs on macrophage pyroptosis and the NLRP3 inflammasome in vivo was also dampened after transfection with prostaglandin E synthase (PTGES) siRNA, and the therapeutic effect in the aGVHD mouse model was impaired. Conclusions Our results demonstrate that macrophage pyroptosis plays a crucial role in the pathogenesis of aGVHD by promoting activation and differentiation of CD4+ T cells. MSCs suppress macrophage pyroptosis in aGVHD via PGE2/cAMP/PKA signaling, which might represent a therapeutic mechanism of MSCs for aGVHD. No relevant conflicts of interest to declare.</abstract><pub>Elsevier Inc</pub><doi>10.1182/blood-2020-138388</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-4971
ispartof Blood, 2020-11, Vol.136 (Supplement 1), p.15-15
issn 0006-4971
1528-0020
language eng
recordid cdi_crossref_primary_10_1182_blood_2020_138388
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title PGE2 Dependent Inhibition of Macrophage Pyroptosis By MSCs Contributes to Alleviating aGVHD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PGE2%20Dependent%20Inhibition%20of%20Macrophage%20Pyroptosis%20By%20MSCs%20Contributes%20to%20Alleviating%20aGVHD&rft.jtitle=Blood&rft.au=Sun,%20Xueyan&rft.date=2020-11-05&rft.volume=136&rft.issue=Supplement%201&rft.spage=15&rft.epage=15&rft.pages=15-15&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood-2020-138388&rft_dat=%3Celsevier_cross%3ES0006497118724336%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0006497118724336&rfr_iscdi=true