Design criteria for rolling contact fatigue resistance in back-up rolls
This research centres on surface initiated damage on back-up rolls whereby rolling contact fatigue cracks can propagate into the rolls potentially reaching the internal stress fields and leading to catastrophic failure and has sought to establish design criteria for avoiding such failures. The proje...
Gespeichert in:
Veröffentlicht in: | Ironmaking & steelmaking 2004-08, Vol.31 (4), p.300-304 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research centres on surface initiated damage on back-up rolls whereby rolling contact fatigue cracks can propagate into the rolls potentially reaching the internal stress fields and leading to catastrophic failure and has sought to establish design criteria for avoiding such failures. The project objectives have been achieved by examining field evidence, determining the loading and tribological conditions at the work roll/back-up roll interface and investigating both theoretically and experimentally the mechanisms involved in rolling contact fatigue in this case. The presented rolling contact, fatigue and fracture mechanics model includes criteria for crack branching either upwards (i.e.relative safety) or downwards (i.e.potentially catastrophic) and the link between these two cases is related, quantitatively, to the properties of the roll material. After linking mechanics to microstructure, the influence of work roll test disc surface roughness on both the surface wear of and the interaction between wear and rolling contact fatigue at the surface of back-up roll test discs has been quantified using the results obtained from experimental simulations carried out on a rolling-sliding testing machine. Finally practical quantitative recommendations are made for the mechanical and microstructural design of bainitic back-up roll materials, back-up roll redressing procedures and the surface roughness of both work rolls and back-up rolls presented to the mill. |
---|---|
ISSN: | 0301-9233 1743-2812 |
DOI: | 10.1179/030192304225018181 |