Neural network model of creep strength of austenitic stainless steels
The creep rupture life and rupture strength of austenitic stainless steels have been expressed as functions of chemical composition, test conditions, stabilisation ratio, and solution treatment temperature. The method involved a neural network analysis of a vast and general database assembled from p...
Gespeichert in:
Veröffentlicht in: | Materials science and technology 2002-06, Vol.18 (6), p.655-663 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 663 |
---|---|
container_issue | 6 |
container_start_page | 655 |
container_title | Materials science and technology |
container_volume | 18 |
creator | Sourmail, T. Bhadeshia, H. K. D. H. MacKay, D. J. C. |
description | The creep rupture life and rupture strength of austenitic stainless steels have been expressed as functions of chemical composition, test conditions, stabilisation ratio, and solution treatment temperature. The method involved a neural network analysis of a vast and general database assembled from published data. The outputs of the model have been assessed against known metallurgical trends and other empirical modelling approaches. The models created are shown to capture important trends and to extrapolate better than conventional techniques. |
doi_str_mv | 10.1179/026708302225002065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1179_026708302225002065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1179_026708302225002065</sage_id><sourcerecordid>27615349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-ade1dbf71276484908e483c74070d2da3771a03be08ff0c1fdd8cad45e721a473</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouK7-AU9F0Ft18rFNe_Ag4heIXvRcxmSi1WyzJi3ivzfrKoKCpxmG533fYYaxXQ6HnOvmCESloZYghJgBCKhma2zCtZKlqJVeZ5MlUGai2mRbKT0DQNU0zYSd3dAY0Rc9DW8hvhTzYMkXwRUmEi2KNETqH4en5QTHNFDfDZ3JY-x6Tynljsinbbbh0Cfa-apTdn9-dnd6WV7fXlydnlyXRjVyKNEStw9Oc6ErVasGalK1NFqBBissSq05gnwgqJ0Dw521tUGrZqQFR6XllB2sfBcxvI6UhnbeJUPeY09hTG325TOZs6Zs7xf4HMbY591aAZwr0XxCYgWZGFKK5NpF7OYY31sO7fKs7d-zZtH-lzMmg95F7E2XfpRSV6IByNzRikv4SD_p_zofrxRd70KcY_6Ht-2A7z7E7xj5j_4DAbiW9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201142949</pqid></control><display><type>article</type><title>Neural network model of creep strength of austenitic stainless steels</title><source>SAGE Complete A-Z List</source><creator>Sourmail, T. ; Bhadeshia, H. K. D. H. ; MacKay, D. J. C.</creator><creatorcontrib>Sourmail, T. ; Bhadeshia, H. K. D. H. ; MacKay, D. J. C.</creatorcontrib><description>The creep rupture life and rupture strength of austenitic stainless steels have been expressed as functions of chemical composition, test conditions, stabilisation ratio, and solution treatment temperature. The method involved a neural network analysis of a vast and general database assembled from published data. The outputs of the model have been assessed against known metallurgical trends and other empirical modelling approaches. The models created are shown to capture important trends and to extrapolate better than conventional techniques.</description><identifier>ISSN: 0267-0836</identifier><identifier>EISSN: 1743-2847</identifier><identifier>DOI: 10.1179/026708302225002065</identifier><identifier>CODEN: MSCTEP</identifier><language>eng</language><publisher>London, England: Taylor & Francis</publisher><subject>Applied sciences ; Creep ; Exact sciences and technology ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy</subject><ispartof>Materials science and technology, 2002-06, Vol.18 (6), p.655-663</ispartof><rights>2002 IOM Communications for the Institute of Materials 2002</rights><rights>2002 IOM Communications for the Institute of Materials</rights><rights>2002 INIST-CNRS</rights><rights>Copyright Institute of Materials Jun 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-ade1dbf71276484908e483c74070d2da3771a03be08ff0c1fdd8cad45e721a473</citedby><cites>FETCH-LOGICAL-c493t-ade1dbf71276484908e483c74070d2da3771a03be08ff0c1fdd8cad45e721a473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1179/026708302225002065$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1179/026708302225002065$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13762900$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sourmail, T.</creatorcontrib><creatorcontrib>Bhadeshia, H. K. D. H.</creatorcontrib><creatorcontrib>MacKay, D. J. C.</creatorcontrib><title>Neural network model of creep strength of austenitic stainless steels</title><title>Materials science and technology</title><description>The creep rupture life and rupture strength of austenitic stainless steels have been expressed as functions of chemical composition, test conditions, stabilisation ratio, and solution treatment temperature. The method involved a neural network analysis of a vast and general database assembled from published data. The outputs of the model have been assessed against known metallurgical trends and other empirical modelling approaches. The models created are shown to capture important trends and to extrapolate better than conventional techniques.</description><subject>Applied sciences</subject><subject>Creep</subject><subject>Exact sciences and technology</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><issn>0267-0836</issn><issn>1743-2847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1LxDAQhoMouK7-AU9F0Ft18rFNe_Ag4heIXvRcxmSi1WyzJi3ivzfrKoKCpxmG533fYYaxXQ6HnOvmCESloZYghJgBCKhma2zCtZKlqJVeZ5MlUGai2mRbKT0DQNU0zYSd3dAY0Rc9DW8hvhTzYMkXwRUmEi2KNETqH4en5QTHNFDfDZ3JY-x6Tynljsinbbbh0Cfa-apTdn9-dnd6WV7fXlydnlyXRjVyKNEStw9Oc6ErVasGalK1NFqBBissSq05gnwgqJ0Dw521tUGrZqQFR6XllB2sfBcxvI6UhnbeJUPeY09hTG325TOZs6Zs7xf4HMbY591aAZwr0XxCYgWZGFKK5NpF7OYY31sO7fKs7d-zZtH-lzMmg95F7E2XfpRSV6IByNzRikv4SD_p_zofrxRd70KcY_6Ht-2A7z7E7xj5j_4DAbiW9A</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Sourmail, T.</creator><creator>Bhadeshia, H. K. D. H.</creator><creator>MacKay, D. J. C.</creator><general>Taylor & Francis</general><general>SAGE Publications</general><general>Maney</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20020601</creationdate><title>Neural network model of creep strength of austenitic stainless steels</title><author>Sourmail, T. ; Bhadeshia, H. K. D. H. ; MacKay, D. J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-ade1dbf71276484908e483c74070d2da3771a03be08ff0c1fdd8cad45e721a473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Creep</topic><topic>Exact sciences and technology</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sourmail, T.</creatorcontrib><creatorcontrib>Bhadeshia, H. K. D. H.</creatorcontrib><creatorcontrib>MacKay, D. J. C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Materials science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sourmail, T.</au><au>Bhadeshia, H. K. D. H.</au><au>MacKay, D. J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network model of creep strength of austenitic stainless steels</atitle><jtitle>Materials science and technology</jtitle><date>2002-06-01</date><risdate>2002</risdate><volume>18</volume><issue>6</issue><spage>655</spage><epage>663</epage><pages>655-663</pages><issn>0267-0836</issn><eissn>1743-2847</eissn><coden>MSCTEP</coden><abstract>The creep rupture life and rupture strength of austenitic stainless steels have been expressed as functions of chemical composition, test conditions, stabilisation ratio, and solution treatment temperature. The method involved a neural network analysis of a vast and general database assembled from published data. The outputs of the model have been assessed against known metallurgical trends and other empirical modelling approaches. The models created are shown to capture important trends and to extrapolate better than conventional techniques.</abstract><cop>London, England</cop><pub>Taylor & Francis</pub><doi>10.1179/026708302225002065</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0267-0836 |
ispartof | Materials science and technology, 2002-06, Vol.18 (6), p.655-663 |
issn | 0267-0836 1743-2847 |
language | eng |
recordid | cdi_crossref_primary_10_1179_026708302225002065 |
source | SAGE Complete A-Z List |
subjects | Applied sciences Creep Exact sciences and technology Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy |
title | Neural network model of creep strength of austenitic stainless steels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20model%20of%20creep%20strength%20of%20austenitic%20stainless%20steels&rft.jtitle=Materials%20science%20and%20technology&rft.au=Sourmail,%20T.&rft.date=2002-06-01&rft.volume=18&rft.issue=6&rft.spage=655&rft.epage=663&rft.pages=655-663&rft.issn=0267-0836&rft.eissn=1743-2847&rft.coden=MSCTEP&rft_id=info:doi/10.1179/026708302225002065&rft_dat=%3Cproquest_cross%3E27615349%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201142949&rft_id=info:pmid/&rft_sage_id=10.1179_026708302225002065&rfr_iscdi=true |