Energy balance of a belt sinter furnace
Controlling the energy consumption in PM processes is becoming increasingly crucial, as in all competing industries. It has been shown that the core PM process of sintering is responsible for most of the energy consumption. 1 2 To improve understanding of the energy flows, a detailed analysis has be...
Gespeichert in:
Veröffentlicht in: | Powder metallurgy 2013-04, Vol.56 (2), p.96-101 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101 |
---|---|
container_issue | 2 |
container_start_page | 96 |
container_title | Powder metallurgy |
container_volume | 56 |
creator | Ernst, Eberhard |
description | Controlling the energy consumption in PM processes is becoming increasingly crucial, as in all competing industries. It has been shown that the core PM process of sintering is responsible for most of the energy consumption.
1
2
To improve understanding of the energy flows, a detailed analysis has been undertaken of a typical belt furnace, involving the mass flow of belt, sinter trays and payload as well as the flow of protective gases, combustible gases and electric energy. Different loading conditions were investigated to generate a complete image of the furnace. Various details have been analysed in a flow canal to understand the physics. The monitored data were matched and checked against a calculated physical balance. |
doi_str_mv | 10.1179/0032589913Z.000000000104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1179_0032589913Z_000000000104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1179_0032589913Z.000000000104</sage_id><sourcerecordid>1365129353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-f88de5f69ec9e466e1800739c2155d92367ba1a82bb796ead46990b89b7be29c3</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0EEqXwH3JBcEnxI07sI6rKQ6rEBS5cLNtZV6ncuNipUP89idKi3mAve_lmZncQygieEVLJB4wZ5UJKwj5n-DgEF2doQqqC5VRico4mA5YP3CW6SmndM4wLMUF3ixbiap8Z7XVrIQsu05kB32WpaTuImdvFVlu4RhdO-wQ3hz1FH0-L9_lLvnx7fp0_LnNbUNHlTogauCslWAlFWQIRGFdMWko4ryVlZWU00YIaU8kSdF2UUmIjpKkMUGnZFN2PvtsYvnaQOrVpkgXfXwdhlxRhJSdUMs56VIyojSGlCE5tY7PRca8IVkM36qQbddpNL709pOhktXex_71Jv3paUdbfOkTwkUt6BWodhi58-o__fNQ1rQtxo79D9LXq9N6HeAxjf7r8AIm2hR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365129353</pqid></control><display><type>article</type><title>Energy balance of a belt sinter furnace</title><source>Sage Journals</source><creator>Ernst, Eberhard</creator><creatorcontrib>Ernst, Eberhard</creatorcontrib><description>Controlling the energy consumption in PM processes is becoming increasingly crucial, as in all competing industries. It has been shown that the core PM process of sintering is responsible for most of the energy consumption.
1
2
To improve understanding of the energy flows, a detailed analysis has been undertaken of a typical belt furnace, involving the mass flow of belt, sinter trays and payload as well as the flow of protective gases, combustible gases and electric energy. Different loading conditions were investigated to generate a complete image of the furnace. Various details have been analysed in a flow canal to understand the physics. The monitored data were matched and checked against a calculated physical balance.</description><identifier>ISSN: 0032-5899</identifier><identifier>EISSN: 1743-2901</identifier><identifier>DOI: 10.1179/0032589913Z.000000000104</identifier><identifier>CODEN: PWMTAU</identifier><language>eng</language><publisher>London, England: Taylor & Francis</publisher><subject>Applied sciences ; Belts ; Energy consumption ; Exact sciences and technology ; Furnaces ; Mathematical analysis ; Metals. Metallurgy ; Microprocessors ; Payloads ; Powder metallurgy. Composite materials ; Production techniques ; Sinter ; Sintered metals and alloys. Pseudo alloys. Cermets ; Technology</subject><ispartof>Powder metallurgy, 2013-04, Vol.56 (2), p.96-101</ispartof><rights>2013 Institute of Materials, Minerals and Mining Published by Maney on behalf of the Institute 2013</rights><rights>2013 Institute of Materials, Minerals and Mining Published by Maney on behalf of the Institute</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-f88de5f69ec9e466e1800739c2155d92367ba1a82bb796ead46990b89b7be29c3</citedby><cites>FETCH-LOGICAL-c428t-f88de5f69ec9e466e1800739c2155d92367ba1a82bb796ead46990b89b7be29c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1179/0032589913Z.000000000104$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1179/0032589913Z.000000000104$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27239233$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ernst, Eberhard</creatorcontrib><title>Energy balance of a belt sinter furnace</title><title>Powder metallurgy</title><description>Controlling the energy consumption in PM processes is becoming increasingly crucial, as in all competing industries. It has been shown that the core PM process of sintering is responsible for most of the energy consumption.
1
2
To improve understanding of the energy flows, a detailed analysis has been undertaken of a typical belt furnace, involving the mass flow of belt, sinter trays and payload as well as the flow of protective gases, combustible gases and electric energy. Different loading conditions were investigated to generate a complete image of the furnace. Various details have been analysed in a flow canal to understand the physics. The monitored data were matched and checked against a calculated physical balance.</description><subject>Applied sciences</subject><subject>Belts</subject><subject>Energy consumption</subject><subject>Exact sciences and technology</subject><subject>Furnaces</subject><subject>Mathematical analysis</subject><subject>Metals. Metallurgy</subject><subject>Microprocessors</subject><subject>Payloads</subject><subject>Powder metallurgy. Composite materials</subject><subject>Production techniques</subject><subject>Sinter</subject><subject>Sintered metals and alloys. Pseudo alloys. Cermets</subject><subject>Technology</subject><issn>0032-5899</issn><issn>1743-2901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0EEqXwH3JBcEnxI07sI6rKQ6rEBS5cLNtZV6ncuNipUP89idKi3mAve_lmZncQygieEVLJB4wZ5UJKwj5n-DgEF2doQqqC5VRico4mA5YP3CW6SmndM4wLMUF3ixbiap8Z7XVrIQsu05kB32WpaTuImdvFVlu4RhdO-wQ3hz1FH0-L9_lLvnx7fp0_LnNbUNHlTogauCslWAlFWQIRGFdMWko4ryVlZWU00YIaU8kSdF2UUmIjpKkMUGnZFN2PvtsYvnaQOrVpkgXfXwdhlxRhJSdUMs56VIyojSGlCE5tY7PRca8IVkM36qQbddpNL709pOhktXex_71Jv3paUdbfOkTwkUt6BWodhi58-o__fNQ1rQtxo79D9LXq9N6HeAxjf7r8AIm2hR8</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Ernst, Eberhard</creator><general>Taylor & Francis</general><general>SAGE Publications</general><general>Maney</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20130401</creationdate><title>Energy balance of a belt sinter furnace</title><author>Ernst, Eberhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-f88de5f69ec9e466e1800739c2155d92367ba1a82bb796ead46990b89b7be29c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Belts</topic><topic>Energy consumption</topic><topic>Exact sciences and technology</topic><topic>Furnaces</topic><topic>Mathematical analysis</topic><topic>Metals. Metallurgy</topic><topic>Microprocessors</topic><topic>Payloads</topic><topic>Powder metallurgy. Composite materials</topic><topic>Production techniques</topic><topic>Sinter</topic><topic>Sintered metals and alloys. Pseudo alloys. Cermets</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ernst, Eberhard</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Powder metallurgy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ernst, Eberhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy balance of a belt sinter furnace</atitle><jtitle>Powder metallurgy</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>56</volume><issue>2</issue><spage>96</spage><epage>101</epage><pages>96-101</pages><issn>0032-5899</issn><eissn>1743-2901</eissn><coden>PWMTAU</coden><abstract>Controlling the energy consumption in PM processes is becoming increasingly crucial, as in all competing industries. It has been shown that the core PM process of sintering is responsible for most of the energy consumption.
1
2
To improve understanding of the energy flows, a detailed analysis has been undertaken of a typical belt furnace, involving the mass flow of belt, sinter trays and payload as well as the flow of protective gases, combustible gases and electric energy. Different loading conditions were investigated to generate a complete image of the furnace. Various details have been analysed in a flow canal to understand the physics. The monitored data were matched and checked against a calculated physical balance.</abstract><cop>London, England</cop><pub>Taylor & Francis</pub><doi>10.1179/0032589913Z.000000000104</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-5899 |
ispartof | Powder metallurgy, 2013-04, Vol.56 (2), p.96-101 |
issn | 0032-5899 1743-2901 |
language | eng |
recordid | cdi_crossref_primary_10_1179_0032589913Z_000000000104 |
source | Sage Journals |
subjects | Applied sciences Belts Energy consumption Exact sciences and technology Furnaces Mathematical analysis Metals. Metallurgy Microprocessors Payloads Powder metallurgy. Composite materials Production techniques Sinter Sintered metals and alloys. Pseudo alloys. Cermets Technology |
title | Energy balance of a belt sinter furnace |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A25%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20balance%20of%20a%20belt%20sinter%20furnace&rft.jtitle=Powder%20metallurgy&rft.au=Ernst,%20Eberhard&rft.date=2013-04-01&rft.volume=56&rft.issue=2&rft.spage=96&rft.epage=101&rft.pages=96-101&rft.issn=0032-5899&rft.eissn=1743-2901&rft.coden=PWMTAU&rft_id=info:doi/10.1179/0032589913Z.000000000104&rft_dat=%3Cproquest_cross%3E1365129353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365129353&rft_id=info:pmid/&rft_sage_id=10.1179_0032589913Z.000000000104&rfr_iscdi=true |