Energy balance of a belt sinter furnace

Controlling the energy consumption in PM processes is becoming increasingly crucial, as in all competing industries. It has been shown that the core PM process of sintering is responsible for most of the energy consumption. 1 2 To improve understanding of the energy flows, a detailed analysis has be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder metallurgy 2013-04, Vol.56 (2), p.96-101
1. Verfasser: Ernst, Eberhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue 2
container_start_page 96
container_title Powder metallurgy
container_volume 56
creator Ernst, Eberhard
description Controlling the energy consumption in PM processes is becoming increasingly crucial, as in all competing industries. It has been shown that the core PM process of sintering is responsible for most of the energy consumption. 1 2 To improve understanding of the energy flows, a detailed analysis has been undertaken of a typical belt furnace, involving the mass flow of belt, sinter trays and payload as well as the flow of protective gases, combustible gases and electric energy. Different loading conditions were investigated to generate a complete image of the furnace. Various details have been analysed in a flow canal to understand the physics. The monitored data were matched and checked against a calculated physical balance.
doi_str_mv 10.1179/0032589913Z.000000000104
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1179_0032589913Z_000000000104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1179_0032589913Z.000000000104</sage_id><sourcerecordid>1365129353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-f88de5f69ec9e466e1800739c2155d92367ba1a82bb796ead46990b89b7be29c3</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0EEqXwH3JBcEnxI07sI6rKQ6rEBS5cLNtZV6ncuNipUP89idKi3mAve_lmZncQygieEVLJB4wZ5UJKwj5n-DgEF2doQqqC5VRico4mA5YP3CW6SmndM4wLMUF3ixbiap8Z7XVrIQsu05kB32WpaTuImdvFVlu4RhdO-wQ3hz1FH0-L9_lLvnx7fp0_LnNbUNHlTogauCslWAlFWQIRGFdMWko4ryVlZWU00YIaU8kSdF2UUmIjpKkMUGnZFN2PvtsYvnaQOrVpkgXfXwdhlxRhJSdUMs56VIyojSGlCE5tY7PRca8IVkM36qQbddpNL709pOhktXex_71Jv3paUdbfOkTwkUt6BWodhi58-o__fNQ1rQtxo79D9LXq9N6HeAxjf7r8AIm2hR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365129353</pqid></control><display><type>article</type><title>Energy balance of a belt sinter furnace</title><source>Sage Journals</source><creator>Ernst, Eberhard</creator><creatorcontrib>Ernst, Eberhard</creatorcontrib><description>Controlling the energy consumption in PM processes is becoming increasingly crucial, as in all competing industries. It has been shown that the core PM process of sintering is responsible for most of the energy consumption. 1 2 To improve understanding of the energy flows, a detailed analysis has been undertaken of a typical belt furnace, involving the mass flow of belt, sinter trays and payload as well as the flow of protective gases, combustible gases and electric energy. Different loading conditions were investigated to generate a complete image of the furnace. Various details have been analysed in a flow canal to understand the physics. The monitored data were matched and checked against a calculated physical balance.</description><identifier>ISSN: 0032-5899</identifier><identifier>EISSN: 1743-2901</identifier><identifier>DOI: 10.1179/0032589913Z.000000000104</identifier><identifier>CODEN: PWMTAU</identifier><language>eng</language><publisher>London, England: Taylor &amp; Francis</publisher><subject>Applied sciences ; Belts ; Energy consumption ; Exact sciences and technology ; Furnaces ; Mathematical analysis ; Metals. Metallurgy ; Microprocessors ; Payloads ; Powder metallurgy. Composite materials ; Production techniques ; Sinter ; Sintered metals and alloys. Pseudo alloys. Cermets ; Technology</subject><ispartof>Powder metallurgy, 2013-04, Vol.56 (2), p.96-101</ispartof><rights>2013 Institute of Materials, Minerals and Mining Published by Maney on behalf of the Institute 2013</rights><rights>2013 Institute of Materials, Minerals and Mining Published by Maney on behalf of the Institute</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-f88de5f69ec9e466e1800739c2155d92367ba1a82bb796ead46990b89b7be29c3</citedby><cites>FETCH-LOGICAL-c428t-f88de5f69ec9e466e1800739c2155d92367ba1a82bb796ead46990b89b7be29c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1179/0032589913Z.000000000104$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1179/0032589913Z.000000000104$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27239233$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ernst, Eberhard</creatorcontrib><title>Energy balance of a belt sinter furnace</title><title>Powder metallurgy</title><description>Controlling the energy consumption in PM processes is becoming increasingly crucial, as in all competing industries. It has been shown that the core PM process of sintering is responsible for most of the energy consumption. 1 2 To improve understanding of the energy flows, a detailed analysis has been undertaken of a typical belt furnace, involving the mass flow of belt, sinter trays and payload as well as the flow of protective gases, combustible gases and electric energy. Different loading conditions were investigated to generate a complete image of the furnace. Various details have been analysed in a flow canal to understand the physics. The monitored data were matched and checked against a calculated physical balance.</description><subject>Applied sciences</subject><subject>Belts</subject><subject>Energy consumption</subject><subject>Exact sciences and technology</subject><subject>Furnaces</subject><subject>Mathematical analysis</subject><subject>Metals. Metallurgy</subject><subject>Microprocessors</subject><subject>Payloads</subject><subject>Powder metallurgy. Composite materials</subject><subject>Production techniques</subject><subject>Sinter</subject><subject>Sintered metals and alloys. Pseudo alloys. Cermets</subject><subject>Technology</subject><issn>0032-5899</issn><issn>1743-2901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0EEqXwH3JBcEnxI07sI6rKQ6rEBS5cLNtZV6ncuNipUP89idKi3mAve_lmZncQygieEVLJB4wZ5UJKwj5n-DgEF2doQqqC5VRico4mA5YP3CW6SmndM4wLMUF3ixbiap8Z7XVrIQsu05kB32WpaTuImdvFVlu4RhdO-wQ3hz1FH0-L9_lLvnx7fp0_LnNbUNHlTogauCslWAlFWQIRGFdMWko4ryVlZWU00YIaU8kSdF2UUmIjpKkMUGnZFN2PvtsYvnaQOrVpkgXfXwdhlxRhJSdUMs56VIyojSGlCE5tY7PRca8IVkM36qQbddpNL709pOhktXex_71Jv3paUdbfOkTwkUt6BWodhi58-o__fNQ1rQtxo79D9LXq9N6HeAxjf7r8AIm2hR8</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Ernst, Eberhard</creator><general>Taylor &amp; Francis</general><general>SAGE Publications</general><general>Maney</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20130401</creationdate><title>Energy balance of a belt sinter furnace</title><author>Ernst, Eberhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-f88de5f69ec9e466e1800739c2155d92367ba1a82bb796ead46990b89b7be29c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Belts</topic><topic>Energy consumption</topic><topic>Exact sciences and technology</topic><topic>Furnaces</topic><topic>Mathematical analysis</topic><topic>Metals. Metallurgy</topic><topic>Microprocessors</topic><topic>Payloads</topic><topic>Powder metallurgy. Composite materials</topic><topic>Production techniques</topic><topic>Sinter</topic><topic>Sintered metals and alloys. Pseudo alloys. Cermets</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ernst, Eberhard</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Powder metallurgy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ernst, Eberhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy balance of a belt sinter furnace</atitle><jtitle>Powder metallurgy</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>56</volume><issue>2</issue><spage>96</spage><epage>101</epage><pages>96-101</pages><issn>0032-5899</issn><eissn>1743-2901</eissn><coden>PWMTAU</coden><abstract>Controlling the energy consumption in PM processes is becoming increasingly crucial, as in all competing industries. It has been shown that the core PM process of sintering is responsible for most of the energy consumption. 1 2 To improve understanding of the energy flows, a detailed analysis has been undertaken of a typical belt furnace, involving the mass flow of belt, sinter trays and payload as well as the flow of protective gases, combustible gases and electric energy. Different loading conditions were investigated to generate a complete image of the furnace. Various details have been analysed in a flow canal to understand the physics. The monitored data were matched and checked against a calculated physical balance.</abstract><cop>London, England</cop><pub>Taylor &amp; Francis</pub><doi>10.1179/0032589913Z.000000000104</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-5899
ispartof Powder metallurgy, 2013-04, Vol.56 (2), p.96-101
issn 0032-5899
1743-2901
language eng
recordid cdi_crossref_primary_10_1179_0032589913Z_000000000104
source Sage Journals
subjects Applied sciences
Belts
Energy consumption
Exact sciences and technology
Furnaces
Mathematical analysis
Metals. Metallurgy
Microprocessors
Payloads
Powder metallurgy. Composite materials
Production techniques
Sinter
Sintered metals and alloys. Pseudo alloys. Cermets
Technology
title Energy balance of a belt sinter furnace
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A25%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20balance%20of%20a%20belt%20sinter%20furnace&rft.jtitle=Powder%20metallurgy&rft.au=Ernst,%20Eberhard&rft.date=2013-04-01&rft.volume=56&rft.issue=2&rft.spage=96&rft.epage=101&rft.pages=96-101&rft.issn=0032-5899&rft.eissn=1743-2901&rft.coden=PWMTAU&rft_id=info:doi/10.1179/0032589913Z.000000000104&rft_dat=%3Cproquest_cross%3E1365129353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365129353&rft_id=info:pmid/&rft_sage_id=10.1179_0032589913Z.000000000104&rfr_iscdi=true