Fuzzy based modeling and optimization of EDMed response of Zircaloy-2
In this work, fuzzy model was developed that predicts response parameters and surface properties of an electrical discharge machined Zircaloy-2. Taguchi L18 mixed design was used to perform the experiments using different process parameters (polarity, pulse-on-time, pulse-off-time, tool electrode ma...
Gespeichert in:
Veröffentlicht in: | Composites and advanced materials 2024-04, Vol.33 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Composites and advanced materials |
container_volume | 33 |
creator | Kumar, Jitendra Soota, Tarun Sunil, BD Y Gupta, Nakul Rajput, Sunil Kumar Sachan, Prachi Saxena, Kuldeep K Jule, Leta Tesfaye |
description | In this work, fuzzy model was developed that predicts response parameters and surface properties of an electrical discharge machined Zircaloy-2. Taguchi L18 mixed design was used to perform the experiments using different process parameters (polarity, pulse-on-time, pulse-off-time, tool electrode material, and peak current). Material removal rate (MRR) and tool wear rate (TWR) were chosen as machining response parameters, whereas number of particles (NoP) and the percentage particle area (PPA) for surface properties of EDMed surface. Digital image processing tool was used to evaluate the surface properties. Fuzzy-Sugeno (FS)-model was developed to predict MRR, TWR, NoP, and PPA. Model accuracy was found to be 94% for MRR and TWR, and 92% for NoP and PPA. Maximum MRR 1.53 × 10−3 mm3/min found when machining was performed using graphite tool with negative polarity. Fuzzy Sugeno-GRA method was successfully implemented to predict optimal response corresponding to high value of GRG. |
doi_str_mv | 10.1177/26349833241249749 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_26349833241249749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_26349833241249749</sage_id><sourcerecordid>10.1177_26349833241249749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-a88c3e8fb91170db78c4642a2f934942f782fba837c78c0f7e69aa03cec646ae3</originalsourceid><addsrcrecordid>eNp9kM9KxDAQxoMouKz7AN7yAl3zjyY5ytpVYcWLXryUaZosXdqmJN1D-_SmrAdB8DTDb-YbvvkQuqdkS6mUDyznQivOmaBMaCn0FVotLFvg9a_-Fm1iPBFCmCKcsHyFiv15nidcQbQ17nxt26Y_Yuhr7Iex6ZoZxsb32DtcPL2llWDj4PtoF_LVBAOtnzJ2h24ctNFufuoafe6Lj91Ldnh_ft09HjLDiB4zUMpwq1ylk21SV1IZkQsGzOn0gGBOKuYqUFyaNCJO2lwDEG6syUUOlq8Rvdw1wccYrCuH0HQQppKScomi_BNF0mwvmghHW578OfTJ4j-Cb14iXbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fuzzy based modeling and optimization of EDMed response of Zircaloy-2</title><source>Sage Journals GOLD Open Access 2024</source><creator>Kumar, Jitendra ; Soota, Tarun ; Sunil, BD Y ; Gupta, Nakul ; Rajput, Sunil Kumar ; Sachan, Prachi ; Saxena, Kuldeep K ; Jule, Leta Tesfaye</creator><creatorcontrib>Kumar, Jitendra ; Soota, Tarun ; Sunil, BD Y ; Gupta, Nakul ; Rajput, Sunil Kumar ; Sachan, Prachi ; Saxena, Kuldeep K ; Jule, Leta Tesfaye</creatorcontrib><description>In this work, fuzzy model was developed that predicts response parameters and surface properties of an electrical discharge machined Zircaloy-2. Taguchi L18 mixed design was used to perform the experiments using different process parameters (polarity, pulse-on-time, pulse-off-time, tool electrode material, and peak current). Material removal rate (MRR) and tool wear rate (TWR) were chosen as machining response parameters, whereas number of particles (NoP) and the percentage particle area (PPA) for surface properties of EDMed surface. Digital image processing tool was used to evaluate the surface properties. Fuzzy-Sugeno (FS)-model was developed to predict MRR, TWR, NoP, and PPA. Model accuracy was found to be 94% for MRR and TWR, and 92% for NoP and PPA. Maximum MRR 1.53 × 10−3 mm3/min found when machining was performed using graphite tool with negative polarity. Fuzzy Sugeno-GRA method was successfully implemented to predict optimal response corresponding to high value of GRG.</description><identifier>ISSN: 2634-9833</identifier><identifier>EISSN: 2634-9833</identifier><identifier>DOI: 10.1177/26349833241249749</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Composites and advanced materials, 2024-04, Vol.33</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c209t-a88c3e8fb91170db78c4642a2f934942f782fba837c78c0f7e69aa03cec646ae3</cites><orcidid>0000-0003-4064-5113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/26349833241249749$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/26349833241249749$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21966,27853,27924,27925,44945,45333</link.rule.ids></links><search><creatorcontrib>Kumar, Jitendra</creatorcontrib><creatorcontrib>Soota, Tarun</creatorcontrib><creatorcontrib>Sunil, BD Y</creatorcontrib><creatorcontrib>Gupta, Nakul</creatorcontrib><creatorcontrib>Rajput, Sunil Kumar</creatorcontrib><creatorcontrib>Sachan, Prachi</creatorcontrib><creatorcontrib>Saxena, Kuldeep K</creatorcontrib><creatorcontrib>Jule, Leta Tesfaye</creatorcontrib><title>Fuzzy based modeling and optimization of EDMed response of Zircaloy-2</title><title>Composites and advanced materials</title><description>In this work, fuzzy model was developed that predicts response parameters and surface properties of an electrical discharge machined Zircaloy-2. Taguchi L18 mixed design was used to perform the experiments using different process parameters (polarity, pulse-on-time, pulse-off-time, tool electrode material, and peak current). Material removal rate (MRR) and tool wear rate (TWR) were chosen as machining response parameters, whereas number of particles (NoP) and the percentage particle area (PPA) for surface properties of EDMed surface. Digital image processing tool was used to evaluate the surface properties. Fuzzy-Sugeno (FS)-model was developed to predict MRR, TWR, NoP, and PPA. Model accuracy was found to be 94% for MRR and TWR, and 92% for NoP and PPA. Maximum MRR 1.53 × 10−3 mm3/min found when machining was performed using graphite tool with negative polarity. Fuzzy Sugeno-GRA method was successfully implemented to predict optimal response corresponding to high value of GRG.</description><issn>2634-9833</issn><issn>2634-9833</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp9kM9KxDAQxoMouKz7AN7yAl3zjyY5ytpVYcWLXryUaZosXdqmJN1D-_SmrAdB8DTDb-YbvvkQuqdkS6mUDyznQivOmaBMaCn0FVotLFvg9a_-Fm1iPBFCmCKcsHyFiv15nidcQbQ17nxt26Y_Yuhr7Iex6ZoZxsb32DtcPL2llWDj4PtoF_LVBAOtnzJ2h24ctNFufuoafe6Lj91Ldnh_ft09HjLDiB4zUMpwq1ylk21SV1IZkQsGzOn0gGBOKuYqUFyaNCJO2lwDEG6syUUOlq8Rvdw1wccYrCuH0HQQppKScomi_BNF0mwvmghHW578OfTJ4j-Cb14iXbQ</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Kumar, Jitendra</creator><creator>Soota, Tarun</creator><creator>Sunil, BD Y</creator><creator>Gupta, Nakul</creator><creator>Rajput, Sunil Kumar</creator><creator>Sachan, Prachi</creator><creator>Saxena, Kuldeep K</creator><creator>Jule, Leta Tesfaye</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4064-5113</orcidid></search><sort><creationdate>20240423</creationdate><title>Fuzzy based modeling and optimization of EDMed response of Zircaloy-2</title><author>Kumar, Jitendra ; Soota, Tarun ; Sunil, BD Y ; Gupta, Nakul ; Rajput, Sunil Kumar ; Sachan, Prachi ; Saxena, Kuldeep K ; Jule, Leta Tesfaye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-a88c3e8fb91170db78c4642a2f934942f782fba837c78c0f7e69aa03cec646ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Jitendra</creatorcontrib><creatorcontrib>Soota, Tarun</creatorcontrib><creatorcontrib>Sunil, BD Y</creatorcontrib><creatorcontrib>Gupta, Nakul</creatorcontrib><creatorcontrib>Rajput, Sunil Kumar</creatorcontrib><creatorcontrib>Sachan, Prachi</creatorcontrib><creatorcontrib>Saxena, Kuldeep K</creatorcontrib><creatorcontrib>Jule, Leta Tesfaye</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><jtitle>Composites and advanced materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Jitendra</au><au>Soota, Tarun</au><au>Sunil, BD Y</au><au>Gupta, Nakul</au><au>Rajput, Sunil Kumar</au><au>Sachan, Prachi</au><au>Saxena, Kuldeep K</au><au>Jule, Leta Tesfaye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy based modeling and optimization of EDMed response of Zircaloy-2</atitle><jtitle>Composites and advanced materials</jtitle><date>2024-04-23</date><risdate>2024</risdate><volume>33</volume><issn>2634-9833</issn><eissn>2634-9833</eissn><abstract>In this work, fuzzy model was developed that predicts response parameters and surface properties of an electrical discharge machined Zircaloy-2. Taguchi L18 mixed design was used to perform the experiments using different process parameters (polarity, pulse-on-time, pulse-off-time, tool electrode material, and peak current). Material removal rate (MRR) and tool wear rate (TWR) were chosen as machining response parameters, whereas number of particles (NoP) and the percentage particle area (PPA) for surface properties of EDMed surface. Digital image processing tool was used to evaluate the surface properties. Fuzzy-Sugeno (FS)-model was developed to predict MRR, TWR, NoP, and PPA. Model accuracy was found to be 94% for MRR and TWR, and 92% for NoP and PPA. Maximum MRR 1.53 × 10−3 mm3/min found when machining was performed using graphite tool with negative polarity. Fuzzy Sugeno-GRA method was successfully implemented to predict optimal response corresponding to high value of GRG.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/26349833241249749</doi><orcidid>https://orcid.org/0000-0003-4064-5113</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2634-9833 |
ispartof | Composites and advanced materials, 2024-04, Vol.33 |
issn | 2634-9833 2634-9833 |
language | eng |
recordid | cdi_crossref_primary_10_1177_26349833241249749 |
source | Sage Journals GOLD Open Access 2024 |
title | Fuzzy based modeling and optimization of EDMed response of Zircaloy-2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A00%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20based%20modeling%20and%20optimization%20of%20EDMed%20response%20of%20Zircaloy-2&rft.jtitle=Composites%20and%20advanced%20materials&rft.au=Kumar,%20Jitendra&rft.date=2024-04-23&rft.volume=33&rft.issn=2634-9833&rft.eissn=2634-9833&rft_id=info:doi/10.1177/26349833241249749&rft_dat=%3Csage_cross%3E10.1177_26349833241249749%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_26349833241249749&rfr_iscdi=true |