What to Consider When Considering Differential Privacy for Policy

Differential privacy (DP) is a mathematical definition of privacy that can be widely applied when publishing data. DP has been recognized as a potential means of adhering to various privacy-related legal requirements. However, it can be difficult to reason about whether DP may be appropriate for a g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Policy insights from the behavioral and brain sciences 2024-10, Vol.11 (2), p.132-140
Hauptverfasser: Nanayakkara, Priyanka, Hullman, Jessica
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140
container_issue 2
container_start_page 132
container_title Policy insights from the behavioral and brain sciences
container_volume 11
creator Nanayakkara, Priyanka
Hullman, Jessica
description Differential privacy (DP) is a mathematical definition of privacy that can be widely applied when publishing data. DP has been recognized as a potential means of adhering to various privacy-related legal requirements. However, it can be difficult to reason about whether DP may be appropriate for a given context due to tensions that arise when it is brought from theory into practice. To aid policymaking around privacy concerns, we identify three categories of challenges to understanding DP along with associated questions that policymakers can ask about the potential deployment context to anticipate its impacts.
doi_str_mv 10.1177/23727322241278687
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_23727322241278687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_23727322241278687</sage_id><sourcerecordid>10.1177_23727322241278687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c166t-4327b3f4c2dec42e9b49ec205736dd71df4a22256811335df9bf31dd4b6d35693</originalsourceid><addsrcrecordid>eNp9kM1qwzAQhEVpoSHNA_SmF3Cq1cqSfQzuLwSaQ0uORtZPouDaRXILfvs6pORS6Gl3B75lZgi5BbYEUOqOo-IKOecCuCpkoS7I7KhlCpFdnnfOr8kipQNjDPJSARYzstru9UCHnlZ9l4J1kW73rjtfodvR--C9i64bgm7pJoZvbUbq-0g3fRvMeEOuvG6TW_zOOXl_fHirnrP169NLtVpnBqQcMoFcNeiF4dYZwV3ZiNIZznKF0loF1gs9JchlAYCYW182HsFa0UiLuSxxTuD018Q-peh8_RnDh45jDaw-1lD_qWFilicm6Z2rD_1X7CaL_wA_cBNb4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>What to Consider When Considering Differential Privacy for Policy</title><source>SAGE Complete</source><creator>Nanayakkara, Priyanka ; Hullman, Jessica</creator><creatorcontrib>Nanayakkara, Priyanka ; Hullman, Jessica</creatorcontrib><description>Differential privacy (DP) is a mathematical definition of privacy that can be widely applied when publishing data. DP has been recognized as a potential means of adhering to various privacy-related legal requirements. However, it can be difficult to reason about whether DP may be appropriate for a given context due to tensions that arise when it is brought from theory into practice. To aid policymaking around privacy concerns, we identify three categories of challenges to understanding DP along with associated questions that policymakers can ask about the potential deployment context to anticipate its impacts.</description><identifier>ISSN: 2372-7322</identifier><identifier>EISSN: 2372-7330</identifier><identifier>DOI: 10.1177/23727322241278687</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Policy insights from the behavioral and brain sciences, 2024-10, Vol.11 (2), p.132-140</ispartof><rights>The Author(s) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c166t-4327b3f4c2dec42e9b49ec205736dd71df4a22256811335df9bf31dd4b6d35693</cites><orcidid>0000-0002-0597-6657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/23727322241278687$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/23727322241278687$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Nanayakkara, Priyanka</creatorcontrib><creatorcontrib>Hullman, Jessica</creatorcontrib><title>What to Consider When Considering Differential Privacy for Policy</title><title>Policy insights from the behavioral and brain sciences</title><description>Differential privacy (DP) is a mathematical definition of privacy that can be widely applied when publishing data. DP has been recognized as a potential means of adhering to various privacy-related legal requirements. However, it can be difficult to reason about whether DP may be appropriate for a given context due to tensions that arise when it is brought from theory into practice. To aid policymaking around privacy concerns, we identify three categories of challenges to understanding DP along with associated questions that policymakers can ask about the potential deployment context to anticipate its impacts.</description><issn>2372-7322</issn><issn>2372-7330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qwzAQhEVpoSHNA_SmF3Cq1cqSfQzuLwSaQ0uORtZPouDaRXILfvs6pORS6Gl3B75lZgi5BbYEUOqOo-IKOecCuCpkoS7I7KhlCpFdnnfOr8kipQNjDPJSARYzstru9UCHnlZ9l4J1kW73rjtfodvR--C9i64bgm7pJoZvbUbq-0g3fRvMeEOuvG6TW_zOOXl_fHirnrP169NLtVpnBqQcMoFcNeiF4dYZwV3ZiNIZznKF0loF1gs9JchlAYCYW182HsFa0UiLuSxxTuD018Q-peh8_RnDh45jDaw-1lD_qWFilicm6Z2rD_1X7CaL_wA_cBNb4Q</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Nanayakkara, Priyanka</creator><creator>Hullman, Jessica</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0597-6657</orcidid></search><sort><creationdate>202410</creationdate><title>What to Consider When Considering Differential Privacy for Policy</title><author>Nanayakkara, Priyanka ; Hullman, Jessica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c166t-4327b3f4c2dec42e9b49ec205736dd71df4a22256811335df9bf31dd4b6d35693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Nanayakkara, Priyanka</creatorcontrib><creatorcontrib>Hullman, Jessica</creatorcontrib><collection>CrossRef</collection><jtitle>Policy insights from the behavioral and brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nanayakkara, Priyanka</au><au>Hullman, Jessica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What to Consider When Considering Differential Privacy for Policy</atitle><jtitle>Policy insights from the behavioral and brain sciences</jtitle><date>2024-10</date><risdate>2024</risdate><volume>11</volume><issue>2</issue><spage>132</spage><epage>140</epage><pages>132-140</pages><issn>2372-7322</issn><eissn>2372-7330</eissn><abstract>Differential privacy (DP) is a mathematical definition of privacy that can be widely applied when publishing data. DP has been recognized as a potential means of adhering to various privacy-related legal requirements. However, it can be difficult to reason about whether DP may be appropriate for a given context due to tensions that arise when it is brought from theory into practice. To aid policymaking around privacy concerns, we identify three categories of challenges to understanding DP along with associated questions that policymakers can ask about the potential deployment context to anticipate its impacts.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/23727322241278687</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0597-6657</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2372-7322
ispartof Policy insights from the behavioral and brain sciences, 2024-10, Vol.11 (2), p.132-140
issn 2372-7322
2372-7330
language eng
recordid cdi_crossref_primary_10_1177_23727322241278687
source SAGE Complete
title What to Consider When Considering Differential Privacy for Policy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20to%20Consider%20When%20Considering%20Differential%20Privacy%20for%20Policy&rft.jtitle=Policy%20insights%20from%20the%20behavioral%20and%20brain%20sciences&rft.au=Nanayakkara,%20Priyanka&rft.date=2024-10&rft.volume=11&rft.issue=2&rft.spage=132&rft.epage=140&rft.pages=132-140&rft.issn=2372-7322&rft.eissn=2372-7330&rft_id=info:doi/10.1177/23727322241278687&rft_dat=%3Csage_cross%3E10.1177_23727322241278687%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_23727322241278687&rfr_iscdi=true