A Methodology to Investigate the Relationship between Lower-Limb Dynamics and Shoe Stiffness Using Custom-Built Footwear

It has been demonstrated that, by varying the mechanical properties of footwear, the sprinting performance can be improved. It has been hypothesized that, for maximal performance, tuning the shoe stiffness to the requirements of the athlete is necessary. The aim of this study was to investigate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part P, Journal of sports engineering and technology Journal of sports engineering and technology, 2011-03, Vol.225 (1), p.32-37
Hauptverfasser: Toon, D, Vinet, A, Pain, M T G, Caine, M P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 1
container_start_page 32
container_title Proceedings of the Institution of Mechanical Engineers. Part P, Journal of sports engineering and technology
container_volume 225
creator Toon, D
Vinet, A
Pain, M T G
Caine, M P
description It has been demonstrated that, by varying the mechanical properties of footwear, the sprinting performance can be improved. It has been hypothesized that, for maximal performance, tuning the shoe stiffness to the requirements of the athlete is necessary. The aim of this study was to investigate the feasibility of using sprint shoes constructed with selective-laser-sintered Nylon 12 sole units for sprint-related jump tasks and to examine whether adaptations to the mechanical properties of the footwear were sufficient to elicit changes to lower-limb dynamics during athletic performance. An internationally competitive sprinter completed sprint-related jump metrics in various selective-laser-sintered shoes with bending stiffnesses of 9 N, 24.5 N, and 38 N in flexion and 7.4 N, 14.7 N, and 26.1 N in extension. The participant performed best in the medium-stiffness shoe for squat jumps and the maximum-stiffness shoe for bounce drop jumps. This investigation has demonstrated that selective laser sintering can produce high-integrity footwear with markedly different mechanical properties. Such footwear, coupled with an appropriate test method, has been shown to be suitable for investigating the relationship between lower-limb dynamics and shoe stiffness.
doi_str_mv 10.1177/1754337110396792
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1754337110396792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1754337110396792</sage_id><sourcerecordid>10.1177_1754337110396792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-50b14349763132a37598752ece82b9a2c759f20a7f059158c3a9a81fc27cec333</originalsourceid><addsrcrecordid>eNp1UF9LwzAcDKLgnL77mC8QzZ91aR_ndHNQEZwD30qa_dpmtMlIMue-vR0THwSf7jjujuMQumX0jjEp75lMRkJIxqjIxjLjZ2hwlIgQ6cf5L5fsEl2FsKF0zFNGB-hrgl8gNm7tWlcfcHR4YT8hRFOrCDg2gN-gVdE4GxqzxSXEPYDFuduDJ7npSvx4sKozOmBl13jZOMDLaKrKQgh4FYyt8XQXouvIw860Ec-c6yuUv0YXlWoD3PzgEK1mT-_TZ5K_zhfTSU50PzCShJZsJEaZHAsmuBIyyVKZcNCQ8jJTXPdCxamSFU0ylqRaqEylrNJcatBCiCGip17tXQgeqmLrTaf8oWC0OD5X_H2uj5BTJKgaio3bedsv_N__Dba0bp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Methodology to Investigate the Relationship between Lower-Limb Dynamics and Shoe Stiffness Using Custom-Built Footwear</title><source>SAGE Complete A-Z List</source><creator>Toon, D ; Vinet, A ; Pain, M T G ; Caine, M P</creator><creatorcontrib>Toon, D ; Vinet, A ; Pain, M T G ; Caine, M P</creatorcontrib><description>It has been demonstrated that, by varying the mechanical properties of footwear, the sprinting performance can be improved. It has been hypothesized that, for maximal performance, tuning the shoe stiffness to the requirements of the athlete is necessary. The aim of this study was to investigate the feasibility of using sprint shoes constructed with selective-laser-sintered Nylon 12 sole units for sprint-related jump tasks and to examine whether adaptations to the mechanical properties of the footwear were sufficient to elicit changes to lower-limb dynamics during athletic performance. An internationally competitive sprinter completed sprint-related jump metrics in various selective-laser-sintered shoes with bending stiffnesses of 9 N, 24.5 N, and 38 N in flexion and 7.4 N, 14.7 N, and 26.1 N in extension. The participant performed best in the medium-stiffness shoe for squat jumps and the maximum-stiffness shoe for bounce drop jumps. This investigation has demonstrated that selective laser sintering can produce high-integrity footwear with markedly different mechanical properties. Such footwear, coupled with an appropriate test method, has been shown to be suitable for investigating the relationship between lower-limb dynamics and shoe stiffness.</description><identifier>ISSN: 1754-3371</identifier><identifier>EISSN: 1754-338X</identifier><identifier>DOI: 10.1177/1754337110396792</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Proceedings of the Institution of Mechanical Engineers. Part P, Journal of sports engineering and technology, 2011-03, Vol.225 (1), p.32-37</ispartof><rights>2011 Institution of Mechanical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-50b14349763132a37598752ece82b9a2c759f20a7f059158c3a9a81fc27cec333</citedby><cites>FETCH-LOGICAL-c281t-50b14349763132a37598752ece82b9a2c759f20a7f059158c3a9a81fc27cec333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1754337110396792$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1754337110396792$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids></links><search><creatorcontrib>Toon, D</creatorcontrib><creatorcontrib>Vinet, A</creatorcontrib><creatorcontrib>Pain, M T G</creatorcontrib><creatorcontrib>Caine, M P</creatorcontrib><title>A Methodology to Investigate the Relationship between Lower-Limb Dynamics and Shoe Stiffness Using Custom-Built Footwear</title><title>Proceedings of the Institution of Mechanical Engineers. Part P, Journal of sports engineering and technology</title><description>It has been demonstrated that, by varying the mechanical properties of footwear, the sprinting performance can be improved. It has been hypothesized that, for maximal performance, tuning the shoe stiffness to the requirements of the athlete is necessary. The aim of this study was to investigate the feasibility of using sprint shoes constructed with selective-laser-sintered Nylon 12 sole units for sprint-related jump tasks and to examine whether adaptations to the mechanical properties of the footwear were sufficient to elicit changes to lower-limb dynamics during athletic performance. An internationally competitive sprinter completed sprint-related jump metrics in various selective-laser-sintered shoes with bending stiffnesses of 9 N, 24.5 N, and 38 N in flexion and 7.4 N, 14.7 N, and 26.1 N in extension. The participant performed best in the medium-stiffness shoe for squat jumps and the maximum-stiffness shoe for bounce drop jumps. This investigation has demonstrated that selective laser sintering can produce high-integrity footwear with markedly different mechanical properties. Such footwear, coupled with an appropriate test method, has been shown to be suitable for investigating the relationship between lower-limb dynamics and shoe stiffness.</description><issn>1754-3371</issn><issn>1754-338X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1UF9LwzAcDKLgnL77mC8QzZ91aR_ndHNQEZwD30qa_dpmtMlIMue-vR0THwSf7jjujuMQumX0jjEp75lMRkJIxqjIxjLjZ2hwlIgQ6cf5L5fsEl2FsKF0zFNGB-hrgl8gNm7tWlcfcHR4YT8hRFOrCDg2gN-gVdE4GxqzxSXEPYDFuduDJ7npSvx4sKozOmBl13jZOMDLaKrKQgh4FYyt8XQXouvIw860Ec-c6yuUv0YXlWoD3PzgEK1mT-_TZ5K_zhfTSU50PzCShJZsJEaZHAsmuBIyyVKZcNCQ8jJTXPdCxamSFU0ylqRaqEylrNJcatBCiCGip17tXQgeqmLrTaf8oWC0OD5X_H2uj5BTJKgaio3bedsv_N__Dba0bp0</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Toon, D</creator><creator>Vinet, A</creator><creator>Pain, M T G</creator><creator>Caine, M P</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110301</creationdate><title>A Methodology to Investigate the Relationship between Lower-Limb Dynamics and Shoe Stiffness Using Custom-Built Footwear</title><author>Toon, D ; Vinet, A ; Pain, M T G ; Caine, M P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-50b14349763132a37598752ece82b9a2c759f20a7f059158c3a9a81fc27cec333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toon, D</creatorcontrib><creatorcontrib>Vinet, A</creatorcontrib><creatorcontrib>Pain, M T G</creatorcontrib><creatorcontrib>Caine, M P</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part P, Journal of sports engineering and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toon, D</au><au>Vinet, A</au><au>Pain, M T G</au><au>Caine, M P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Methodology to Investigate the Relationship between Lower-Limb Dynamics and Shoe Stiffness Using Custom-Built Footwear</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part P, Journal of sports engineering and technology</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>225</volume><issue>1</issue><spage>32</spage><epage>37</epage><pages>32-37</pages><issn>1754-3371</issn><eissn>1754-338X</eissn><abstract>It has been demonstrated that, by varying the mechanical properties of footwear, the sprinting performance can be improved. It has been hypothesized that, for maximal performance, tuning the shoe stiffness to the requirements of the athlete is necessary. The aim of this study was to investigate the feasibility of using sprint shoes constructed with selective-laser-sintered Nylon 12 sole units for sprint-related jump tasks and to examine whether adaptations to the mechanical properties of the footwear were sufficient to elicit changes to lower-limb dynamics during athletic performance. An internationally competitive sprinter completed sprint-related jump metrics in various selective-laser-sintered shoes with bending stiffnesses of 9 N, 24.5 N, and 38 N in flexion and 7.4 N, 14.7 N, and 26.1 N in extension. The participant performed best in the medium-stiffness shoe for squat jumps and the maximum-stiffness shoe for bounce drop jumps. This investigation has demonstrated that selective laser sintering can produce high-integrity footwear with markedly different mechanical properties. Such footwear, coupled with an appropriate test method, has been shown to be suitable for investigating the relationship between lower-limb dynamics and shoe stiffness.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1754337110396792</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-3371
ispartof Proceedings of the Institution of Mechanical Engineers. Part P, Journal of sports engineering and technology, 2011-03, Vol.225 (1), p.32-37
issn 1754-3371
1754-338X
language eng
recordid cdi_crossref_primary_10_1177_1754337110396792
source SAGE Complete A-Z List
title A Methodology to Investigate the Relationship between Lower-Limb Dynamics and Shoe Stiffness Using Custom-Built Footwear
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Methodology%20to%20Investigate%20the%20Relationship%20between%20Lower-Limb%20Dynamics%20and%20Shoe%20Stiffness%20Using%20Custom-Built%20Footwear&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20P,%20Journal%20of%20sports%20engineering%20and%20technology&rft.au=Toon,%20D&rft.date=2011-03-01&rft.volume=225&rft.issue=1&rft.spage=32&rft.epage=37&rft.pages=32-37&rft.issn=1754-3371&rft.eissn=1754-338X&rft_id=info:doi/10.1177/1754337110396792&rft_dat=%3Csage_cross%3E10.1177_1754337110396792%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1754337110396792&rfr_iscdi=true