Geometric modeling of knitted fabrics using helicoid scaffolds
We present a bicontinuous, minimal surface (the helicoid) as a scaffold on which to define the topology and geometry of yarns in a weft-knitted fabric. Modeling with helicoids offers a geometric approach to simulating a physical manufacturing process, which should generate geometric models suitable...
Gespeichert in:
Veröffentlicht in: | Journal of engineered fibers and fabrics 2020-04, Vol.15 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of engineered fibers and fabrics |
container_volume | 15 |
creator | Wadekar, Paras Goel, Prateek Amanatides, Chelsea Dion, Genevieve Kamien, Randall D Breen, David E |
description | We present a bicontinuous, minimal surface (the helicoid) as a scaffold on which to define the topology and geometry of yarns in a weft-knitted fabric. Modeling with helicoids offers a geometric approach to simulating a physical manufacturing process, which should generate geometric models suitable for downstream mechanical and validity analyses. The centerline of a yarn in a knitted fabric is specified as a geodesic path, with constrained boundary conditions, running along a helicoid at a fixed distance. The shape of the yarn’s centerline is produced via an optimization process over a polyline. The distances between the vertices of the polyline are shortened and a repulsive potential keeps the vertices at a specified distance from the helicoid. These actions and constraints are formulated into a single “energy” function, which is then minimized. The yarn geometry is generated as a tube around the centerline. The optimized configuration, defined for a half loop, is duplicated, reflected, and shifted to produce the centerlines for the multiple stitches that make up a fabric. In addition, the parameters of the helicoid may be used to control the size and shape of the fabric’s stitches. We show that helicoid scaffolds may be used to define both knit and purl stitches, which are then combined to produce models of all-knit, rib, and garter fabrics. |
doi_str_mv | 10.1177/1558925020913871 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1558925020913871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1558925020913871</sage_id><sourcerecordid>10.1177_1558925020913871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-21f2268d11d25278dd675e4e5d5f7908bd43be6e39d124b9696a747482a41f473</originalsourceid><addsrcrecordid>eNp1j09LxDAQxYO44Lrr3WO-QDWTP01yEWTRVVjwoueSdpK1a9tI0j347W1ZDyJ4muH95g3vEXIN7AZA61tQyliuGGcWhNFwRpazVMza-a_9glzmfGBMWaHYktxtfez9mNqG9hF91w57GgP9GNpx9EiDqyeU6THP4H3iTWyR5saFEDvMa7IIrsv-6meuyNvjw-vmqdi9bJ8397uiEVyMBYfAeWkQALni2iCWWnnpFaqgLTM1SlH70guLwGVtS1s6LbU03EkIUosVYae_TYo5Jx-qz9T2Ln1VwKq5f_W3_2QpTpbs9r46xGMapoT_338DmflZcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometric modeling of knitted fabrics using helicoid scaffolds</title><source>DOAJ Directory of Open Access Journals</source><source>Sage Journals GOLD Open Access 2024</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Wadekar, Paras ; Goel, Prateek ; Amanatides, Chelsea ; Dion, Genevieve ; Kamien, Randall D ; Breen, David E</creator><creatorcontrib>Wadekar, Paras ; Goel, Prateek ; Amanatides, Chelsea ; Dion, Genevieve ; Kamien, Randall D ; Breen, David E</creatorcontrib><description>We present a bicontinuous, minimal surface (the helicoid) as a scaffold on which to define the topology and geometry of yarns in a weft-knitted fabric. Modeling with helicoids offers a geometric approach to simulating a physical manufacturing process, which should generate geometric models suitable for downstream mechanical and validity analyses. The centerline of a yarn in a knitted fabric is specified as a geodesic path, with constrained boundary conditions, running along a helicoid at a fixed distance. The shape of the yarn’s centerline is produced via an optimization process over a polyline. The distances between the vertices of the polyline are shortened and a repulsive potential keeps the vertices at a specified distance from the helicoid. These actions and constraints are formulated into a single “energy” function, which is then minimized. The yarn geometry is generated as a tube around the centerline. The optimized configuration, defined for a half loop, is duplicated, reflected, and shifted to produce the centerlines for the multiple stitches that make up a fabric. In addition, the parameters of the helicoid may be used to control the size and shape of the fabric’s stitches. We show that helicoid scaffolds may be used to define both knit and purl stitches, which are then combined to produce models of all-knit, rib, and garter fabrics.</description><identifier>ISSN: 1558-9250</identifier><identifier>EISSN: 1558-9250</identifier><identifier>DOI: 10.1177/1558925020913871</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Journal of engineered fibers and fabrics, 2020-04, Vol.15</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-21f2268d11d25278dd675e4e5d5f7908bd43be6e39d124b9696a747482a41f473</citedby><cites>FETCH-LOGICAL-c323t-21f2268d11d25278dd675e4e5d5f7908bd43be6e39d124b9696a747482a41f473</cites><orcidid>0000-0003-1598-5626 ; 0000-0002-0949-652X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1558925020913871$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1558925020913871$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,21946,27832,27903,27904,44924,45312</link.rule.ids></links><search><creatorcontrib>Wadekar, Paras</creatorcontrib><creatorcontrib>Goel, Prateek</creatorcontrib><creatorcontrib>Amanatides, Chelsea</creatorcontrib><creatorcontrib>Dion, Genevieve</creatorcontrib><creatorcontrib>Kamien, Randall D</creatorcontrib><creatorcontrib>Breen, David E</creatorcontrib><title>Geometric modeling of knitted fabrics using helicoid scaffolds</title><title>Journal of engineered fibers and fabrics</title><description>We present a bicontinuous, minimal surface (the helicoid) as a scaffold on which to define the topology and geometry of yarns in a weft-knitted fabric. Modeling with helicoids offers a geometric approach to simulating a physical manufacturing process, which should generate geometric models suitable for downstream mechanical and validity analyses. The centerline of a yarn in a knitted fabric is specified as a geodesic path, with constrained boundary conditions, running along a helicoid at a fixed distance. The shape of the yarn’s centerline is produced via an optimization process over a polyline. The distances between the vertices of the polyline are shortened and a repulsive potential keeps the vertices at a specified distance from the helicoid. These actions and constraints are formulated into a single “energy” function, which is then minimized. The yarn geometry is generated as a tube around the centerline. The optimized configuration, defined for a half loop, is duplicated, reflected, and shifted to produce the centerlines for the multiple stitches that make up a fabric. In addition, the parameters of the helicoid may be used to control the size and shape of the fabric’s stitches. We show that helicoid scaffolds may be used to define both knit and purl stitches, which are then combined to produce models of all-knit, rib, and garter fabrics.</description><issn>1558-9250</issn><issn>1558-9250</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1j09LxDAQxYO44Lrr3WO-QDWTP01yEWTRVVjwoueSdpK1a9tI0j347W1ZDyJ4muH95g3vEXIN7AZA61tQyliuGGcWhNFwRpazVMza-a_9glzmfGBMWaHYktxtfez9mNqG9hF91w57GgP9GNpx9EiDqyeU6THP4H3iTWyR5saFEDvMa7IIrsv-6meuyNvjw-vmqdi9bJ8397uiEVyMBYfAeWkQALni2iCWWnnpFaqgLTM1SlH70guLwGVtS1s6LbU03EkIUosVYae_TYo5Jx-qz9T2Ln1VwKq5f_W3_2QpTpbs9r46xGMapoT_338DmflZcA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Wadekar, Paras</creator><creator>Goel, Prateek</creator><creator>Amanatides, Chelsea</creator><creator>Dion, Genevieve</creator><creator>Kamien, Randall D</creator><creator>Breen, David E</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1598-5626</orcidid><orcidid>https://orcid.org/0000-0002-0949-652X</orcidid></search><sort><creationdate>20200401</creationdate><title>Geometric modeling of knitted fabrics using helicoid scaffolds</title><author>Wadekar, Paras ; Goel, Prateek ; Amanatides, Chelsea ; Dion, Genevieve ; Kamien, Randall D ; Breen, David E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-21f2268d11d25278dd675e4e5d5f7908bd43be6e39d124b9696a747482a41f473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wadekar, Paras</creatorcontrib><creatorcontrib>Goel, Prateek</creatorcontrib><creatorcontrib>Amanatides, Chelsea</creatorcontrib><creatorcontrib>Dion, Genevieve</creatorcontrib><creatorcontrib>Kamien, Randall D</creatorcontrib><creatorcontrib>Breen, David E</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><jtitle>Journal of engineered fibers and fabrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wadekar, Paras</au><au>Goel, Prateek</au><au>Amanatides, Chelsea</au><au>Dion, Genevieve</au><au>Kamien, Randall D</au><au>Breen, David E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric modeling of knitted fabrics using helicoid scaffolds</atitle><jtitle>Journal of engineered fibers and fabrics</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>15</volume><issn>1558-9250</issn><eissn>1558-9250</eissn><abstract>We present a bicontinuous, minimal surface (the helicoid) as a scaffold on which to define the topology and geometry of yarns in a weft-knitted fabric. Modeling with helicoids offers a geometric approach to simulating a physical manufacturing process, which should generate geometric models suitable for downstream mechanical and validity analyses. The centerline of a yarn in a knitted fabric is specified as a geodesic path, with constrained boundary conditions, running along a helicoid at a fixed distance. The shape of the yarn’s centerline is produced via an optimization process over a polyline. The distances between the vertices of the polyline are shortened and a repulsive potential keeps the vertices at a specified distance from the helicoid. These actions and constraints are formulated into a single “energy” function, which is then minimized. The yarn geometry is generated as a tube around the centerline. The optimized configuration, defined for a half loop, is duplicated, reflected, and shifted to produce the centerlines for the multiple stitches that make up a fabric. In addition, the parameters of the helicoid may be used to control the size and shape of the fabric’s stitches. We show that helicoid scaffolds may be used to define both knit and purl stitches, which are then combined to produce models of all-knit, rib, and garter fabrics.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1558925020913871</doi><orcidid>https://orcid.org/0000-0003-1598-5626</orcidid><orcidid>https://orcid.org/0000-0002-0949-652X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-9250 |
ispartof | Journal of engineered fibers and fabrics, 2020-04, Vol.15 |
issn | 1558-9250 1558-9250 |
language | eng |
recordid | cdi_crossref_primary_10_1177_1558925020913871 |
source | DOAJ Directory of Open Access Journals; Sage Journals GOLD Open Access 2024; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
title | Geometric modeling of knitted fabrics using helicoid scaffolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A32%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20modeling%20of%20knitted%20fabrics%20using%20helicoid%20scaffolds&rft.jtitle=Journal%20of%20engineered%20fibers%20and%20fabrics&rft.au=Wadekar,%20Paras&rft.date=2020-04-01&rft.volume=15&rft.issn=1558-9250&rft.eissn=1558-9250&rft_id=info:doi/10.1177/1558925020913871&rft_dat=%3Csage_cross%3E10.1177_1558925020913871%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1558925020913871&rfr_iscdi=true |