Accelerated point set registration method

In computer vision and robotics, point set registration is a fundamental issue used to estimate the relative position and orientation (pose) of an object in an environment. In a rapidly changing scene, this method must be executed frequently and in a timely manner, or the pose estimation becomes out...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of defense modeling and simulation 2024-10, Vol.21 (4), p.421-440
Hauptverfasser: Raettig, Ryan M, Anderson, James D, Nykl, Scott L, Merkle, Laurence D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue 4
container_start_page 421
container_title Journal of defense modeling and simulation
container_volume 21
creator Raettig, Ryan M
Anderson, James D
Nykl, Scott L
Merkle, Laurence D
description In computer vision and robotics, point set registration is a fundamental issue used to estimate the relative position and orientation (pose) of an object in an environment. In a rapidly changing scene, this method must be executed frequently and in a timely manner, or the pose estimation becomes outdated. The point registration method is a computational bottleneck of a vision-processing pipeline. For this reason, this paper focuses on speeding up a widely used point registration method, the iterative closest point (ICP) algorithm. In addition, the ICP algorithm is transformed into a massively parallel algorithm and mapped onto a vector processor to realize a speedup of approximately an order of magnitude. Finally, we provide algorithmic and run-time analysis.
doi_str_mv 10.1177/15485129221150454
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_15485129221150454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_15485129221150454</sage_id><sourcerecordid>10.1177_15485129221150454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-b3604d6cf6c2632bce3b2c0aae0c0f443ee422191ace7ab69647cc9dd4a079703</originalsourceid><addsrcrecordid>eNp9j81Lw0AQxRdRsFb_AG-5ekid2c_ssRS_oOBFwVvYTCY1pU3K7nrwvzel3gRPb3i83_CeELcIC0Tn7tHoyqD0UiIa0EafiRka40pVwcf58dZVeQxciquUtgBGe-Vm4m5JxDuOIXNbHMZ-yEXiXETe9ClPbj8OxZ7z59hei4su7BLf_OpcvD8-vK2ey_Xr08tquS5JKpvLRlnQraXOkrRKNsSqkQQhMBB0WitmPZX0GIhdaKy32hH5ttUBnHeg5gJPfymOKUXu6kPs9yF-1wj1cWv9Z-vELE5MChuut-NXHKaK_wA_kXdTog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accelerated point set registration method</title><source>SAGE Complete</source><creator>Raettig, Ryan M ; Anderson, James D ; Nykl, Scott L ; Merkle, Laurence D</creator><creatorcontrib>Raettig, Ryan M ; Anderson, James D ; Nykl, Scott L ; Merkle, Laurence D</creatorcontrib><description>In computer vision and robotics, point set registration is a fundamental issue used to estimate the relative position and orientation (pose) of an object in an environment. In a rapidly changing scene, this method must be executed frequently and in a timely manner, or the pose estimation becomes outdated. The point registration method is a computational bottleneck of a vision-processing pipeline. For this reason, this paper focuses on speeding up a widely used point registration method, the iterative closest point (ICP) algorithm. In addition, the ICP algorithm is transformed into a massively parallel algorithm and mapped onto a vector processor to realize a speedup of approximately an order of magnitude. Finally, we provide algorithmic and run-time analysis.</description><identifier>ISSN: 1548-5129</identifier><identifier>EISSN: 1557-380X</identifier><identifier>DOI: 10.1177/15485129221150454</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Journal of defense modeling and simulation, 2024-10, Vol.21 (4), p.421-440</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-b3604d6cf6c2632bce3b2c0aae0c0f443ee422191ace7ab69647cc9dd4a079703</cites><orcidid>0000-0002-4271-2132 ; 0000-0002-4809-5382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/15485129221150454$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/15485129221150454$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Raettig, Ryan M</creatorcontrib><creatorcontrib>Anderson, James D</creatorcontrib><creatorcontrib>Nykl, Scott L</creatorcontrib><creatorcontrib>Merkle, Laurence D</creatorcontrib><title>Accelerated point set registration method</title><title>Journal of defense modeling and simulation</title><description>In computer vision and robotics, point set registration is a fundamental issue used to estimate the relative position and orientation (pose) of an object in an environment. In a rapidly changing scene, this method must be executed frequently and in a timely manner, or the pose estimation becomes outdated. The point registration method is a computational bottleneck of a vision-processing pipeline. For this reason, this paper focuses on speeding up a widely used point registration method, the iterative closest point (ICP) algorithm. In addition, the ICP algorithm is transformed into a massively parallel algorithm and mapped onto a vector processor to realize a speedup of approximately an order of magnitude. Finally, we provide algorithmic and run-time analysis.</description><issn>1548-5129</issn><issn>1557-380X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j81Lw0AQxRdRsFb_AG-5ekid2c_ssRS_oOBFwVvYTCY1pU3K7nrwvzel3gRPb3i83_CeELcIC0Tn7tHoyqD0UiIa0EafiRka40pVwcf58dZVeQxciquUtgBGe-Vm4m5JxDuOIXNbHMZ-yEXiXETe9ClPbj8OxZ7z59hei4su7BLf_OpcvD8-vK2ey_Xr08tquS5JKpvLRlnQraXOkrRKNsSqkQQhMBB0WitmPZX0GIhdaKy32hH5ttUBnHeg5gJPfymOKUXu6kPs9yF-1wj1cWv9Z-vELE5MChuut-NXHKaK_wA_kXdTog</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Raettig, Ryan M</creator><creator>Anderson, James D</creator><creator>Nykl, Scott L</creator><creator>Merkle, Laurence D</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4271-2132</orcidid><orcidid>https://orcid.org/0000-0002-4809-5382</orcidid></search><sort><creationdate>20241001</creationdate><title>Accelerated point set registration method</title><author>Raettig, Ryan M ; Anderson, James D ; Nykl, Scott L ; Merkle, Laurence D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-b3604d6cf6c2632bce3b2c0aae0c0f443ee422191ace7ab69647cc9dd4a079703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raettig, Ryan M</creatorcontrib><creatorcontrib>Anderson, James D</creatorcontrib><creatorcontrib>Nykl, Scott L</creatorcontrib><creatorcontrib>Merkle, Laurence D</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of defense modeling and simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raettig, Ryan M</au><au>Anderson, James D</au><au>Nykl, Scott L</au><au>Merkle, Laurence D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated point set registration method</atitle><jtitle>Journal of defense modeling and simulation</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>421</spage><epage>440</epage><pages>421-440</pages><issn>1548-5129</issn><eissn>1557-380X</eissn><abstract>In computer vision and robotics, point set registration is a fundamental issue used to estimate the relative position and orientation (pose) of an object in an environment. In a rapidly changing scene, this method must be executed frequently and in a timely manner, or the pose estimation becomes outdated. The point registration method is a computational bottleneck of a vision-processing pipeline. For this reason, this paper focuses on speeding up a widely used point registration method, the iterative closest point (ICP) algorithm. In addition, the ICP algorithm is transformed into a massively parallel algorithm and mapped onto a vector processor to realize a speedup of approximately an order of magnitude. Finally, we provide algorithmic and run-time analysis.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/15485129221150454</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4271-2132</orcidid><orcidid>https://orcid.org/0000-0002-4809-5382</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1548-5129
ispartof Journal of defense modeling and simulation, 2024-10, Vol.21 (4), p.421-440
issn 1548-5129
1557-380X
language eng
recordid cdi_crossref_primary_10_1177_15485129221150454
source SAGE Complete
title Accelerated point set registration method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20point%20set%20registration%20method&rft.jtitle=Journal%20of%20defense%20modeling%20and%20simulation&rft.au=Raettig,%20Ryan%20M&rft.date=2024-10-01&rft.volume=21&rft.issue=4&rft.spage=421&rft.epage=440&rft.pages=421-440&rft.issn=1548-5129&rft.eissn=1557-380X&rft_id=info:doi/10.1177/15485129221150454&rft_dat=%3Csage_cross%3E10.1177_15485129221150454%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_15485129221150454&rfr_iscdi=true