A random graph generation algorithm for the analysis of social networks
Social network analysis (SNA) is a rapidly growing field with numerous applications in industry and government. However, the field still lacks means to generate random social networks with certain desired properties, thus inhibiting their ability to test new SNA algorithms and metrics. Available ran...
Gespeichert in:
Veröffentlicht in: | Journal of defense modeling and simulation 2014-07, Vol.11 (3), p.265-276 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 276 |
---|---|
container_issue | 3 |
container_start_page | 265 |
container_title | Journal of defense modeling and simulation |
container_volume | 11 |
creator | Morris, James F. O’Neal, Jerome W. Deckro, Richard F. |
description | Social network analysis (SNA) is a rapidly growing field with numerous applications in industry and government. However, the field still lacks means to generate random social networks with certain desired properties, thus inhibiting their ability to test new SNA algorithms and metrics. Available random graph generation algorithms suffer from tendencies to generate disconnected graphs and sometimes induce undesirable network properties. In this paper, we present an algorithm, the prescribed node degree, connected graph (PNDCG) algorithm, designed to generate weakly connected social networks. Extensions to the PNDCG algorithm allow one to create random graphs that control the clustering coefficient and degree correlation within the generated networks. Empirical test results demonstrate the capability of the PNDCG algorithm to produce networks with the desired properties. |
doi_str_mv | 10.1177/1548512912450370 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1548512912450370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1548512912450370</sage_id><sourcerecordid>10.1177_1548512912450370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-2c8a8130e7bafaa0f27b554e7d3ad5e8c33859e244c245177935358fb84a9b53</originalsourceid><addsrcrecordid>eNp1kL1LA0EQxRdRMEZ7y20sT_drsntlCH5BwCaF3TG32b1cvNyGnRPJf--FiIVgNQ_mvQe_x9itFPdSWvsgwTiQqpTKgNBWnLGJBLCFduL9_KiNK47_S3ZFtBUCTKnthD3PecZ-nXa8ybjf8Cb0IePQpp5j16TcDpsdjynzYRM49tgdqCWeIqfkW-x4H4avlD_oml1E7Cjc_NwpWz09rhYvxfLt-XUxXxZeSzkUyjt0Uotga4yIIipbA5hg1xrXEJzX2kEZlDF-5Bi5Sg0aXKydwbIGPWXiVOtzIsohVvvc7jAfKimq4w7V3x3GyN0pskfy2MUR17f0m1POzoxUs9FXnHyETai26TOPtPR_7zdqZ2m8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A random graph generation algorithm for the analysis of social networks</title><source>Access via SAGE</source><creator>Morris, James F. ; O’Neal, Jerome W. ; Deckro, Richard F.</creator><creatorcontrib>Morris, James F. ; O’Neal, Jerome W. ; Deckro, Richard F.</creatorcontrib><description>Social network analysis (SNA) is a rapidly growing field with numerous applications in industry and government. However, the field still lacks means to generate random social networks with certain desired properties, thus inhibiting their ability to test new SNA algorithms and metrics. Available random graph generation algorithms suffer from tendencies to generate disconnected graphs and sometimes induce undesirable network properties. In this paper, we present an algorithm, the prescribed node degree, connected graph (PNDCG) algorithm, designed to generate weakly connected social networks. Extensions to the PNDCG algorithm allow one to create random graphs that control the clustering coefficient and degree correlation within the generated networks. Empirical test results demonstrate the capability of the PNDCG algorithm to produce networks with the desired properties.</description><identifier>ISSN: 1548-5129</identifier><identifier>EISSN: 1557-380X</identifier><identifier>DOI: 10.1177/1548512912450370</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Information retrieval. Graph ; Memory organisation. Data processing ; Software ; Theoretical computing</subject><ispartof>Journal of defense modeling and simulation, 2014-07, Vol.11 (3), p.265-276</ispartof><rights>2013 The Society for Modeling and Simulation International</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-2c8a8130e7bafaa0f27b554e7d3ad5e8c33859e244c245177935358fb84a9b53</citedby><cites>FETCH-LOGICAL-c311t-2c8a8130e7bafaa0f27b554e7d3ad5e8c33859e244c245177935358fb84a9b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1548512912450370$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1548512912450370$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28764126$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Morris, James F.</creatorcontrib><creatorcontrib>O’Neal, Jerome W.</creatorcontrib><creatorcontrib>Deckro, Richard F.</creatorcontrib><title>A random graph generation algorithm for the analysis of social networks</title><title>Journal of defense modeling and simulation</title><description>Social network analysis (SNA) is a rapidly growing field with numerous applications in industry and government. However, the field still lacks means to generate random social networks with certain desired properties, thus inhibiting their ability to test new SNA algorithms and metrics. Available random graph generation algorithms suffer from tendencies to generate disconnected graphs and sometimes induce undesirable network properties. In this paper, we present an algorithm, the prescribed node degree, connected graph (PNDCG) algorithm, designed to generate weakly connected social networks. Extensions to the PNDCG algorithm allow one to create random graphs that control the clustering coefficient and degree correlation within the generated networks. Empirical test results demonstrate the capability of the PNDCG algorithm to produce networks with the desired properties.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Information retrieval. Graph</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><subject>Theoretical computing</subject><issn>1548-5129</issn><issn>1557-380X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kL1LA0EQxRdRMEZ7y20sT_drsntlCH5BwCaF3TG32b1cvNyGnRPJf--FiIVgNQ_mvQe_x9itFPdSWvsgwTiQqpTKgNBWnLGJBLCFduL9_KiNK47_S3ZFtBUCTKnthD3PecZ-nXa8ybjf8Cb0IePQpp5j16TcDpsdjynzYRM49tgdqCWeIqfkW-x4H4avlD_oml1E7Cjc_NwpWz09rhYvxfLt-XUxXxZeSzkUyjt0Uotga4yIIipbA5hg1xrXEJzX2kEZlDF-5Bi5Sg0aXKydwbIGPWXiVOtzIsohVvvc7jAfKimq4w7V3x3GyN0pskfy2MUR17f0m1POzoxUs9FXnHyETai26TOPtPR_7zdqZ2m8</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Morris, James F.</creator><creator>O’Neal, Jerome W.</creator><creator>Deckro, Richard F.</creator><general>SAGE Publications</general><general>Sage Publications</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140701</creationdate><title>A random graph generation algorithm for the analysis of social networks</title><author>Morris, James F. ; O’Neal, Jerome W. ; Deckro, Richard F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-2c8a8130e7bafaa0f27b554e7d3ad5e8c33859e244c245177935358fb84a9b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Information retrieval. Graph</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, James F.</creatorcontrib><creatorcontrib>O’Neal, Jerome W.</creatorcontrib><creatorcontrib>Deckro, Richard F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of defense modeling and simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, James F.</au><au>O’Neal, Jerome W.</au><au>Deckro, Richard F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A random graph generation algorithm for the analysis of social networks</atitle><jtitle>Journal of defense modeling and simulation</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>11</volume><issue>3</issue><spage>265</spage><epage>276</epage><pages>265-276</pages><issn>1548-5129</issn><eissn>1557-380X</eissn><abstract>Social network analysis (SNA) is a rapidly growing field with numerous applications in industry and government. However, the field still lacks means to generate random social networks with certain desired properties, thus inhibiting their ability to test new SNA algorithms and metrics. Available random graph generation algorithms suffer from tendencies to generate disconnected graphs and sometimes induce undesirable network properties. In this paper, we present an algorithm, the prescribed node degree, connected graph (PNDCG) algorithm, designed to generate weakly connected social networks. Extensions to the PNDCG algorithm allow one to create random graphs that control the clustering coefficient and degree correlation within the generated networks. Empirical test results demonstrate the capability of the PNDCG algorithm to produce networks with the desired properties.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1548512912450370</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-5129 |
ispartof | Journal of defense modeling and simulation, 2014-07, Vol.11 (3), p.265-276 |
issn | 1548-5129 1557-380X |
language | eng |
recordid | cdi_crossref_primary_10_1177_1548512912450370 |
source | Access via SAGE |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Computer systems and distributed systems. User interface Data processing. List processing. Character string processing Exact sciences and technology Information retrieval. Graph Memory organisation. Data processing Software Theoretical computing |
title | A random graph generation algorithm for the analysis of social networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20random%20graph%20generation%20algorithm%20for%20the%20analysis%20of%20social%20networks&rft.jtitle=Journal%20of%20defense%20modeling%20and%20simulation&rft.au=Morris,%20James%20F.&rft.date=2014-07-01&rft.volume=11&rft.issue=3&rft.spage=265&rft.epage=276&rft.pages=265-276&rft.issn=1548-5129&rft.eissn=1557-380X&rft_id=info:doi/10.1177/1548512912450370&rft_dat=%3Csage_cross%3E10.1177_1548512912450370%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1548512912450370&rfr_iscdi=true |