Representing Autonomous Systems’ Self-Confidence through Competency Boundaries

A method for determining the self-confidence of autonomous systems is proposed to assist operators in understanding the state of unmanned vehicles under control. A sensing-optimization/verification-action (SOVA) model, similar to the perception-cognition-action human informational processing model,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2015-09, Vol.59 (1), p.279-283
Hauptverfasser: Hutchins, Andrew R., Cummings, M. L., Draper, Mark, Hughes, Thomas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 283
container_issue 1
container_start_page 279
container_title Proceedings of the Human Factors and Ergonomics Society Annual Meeting
container_volume 59
creator Hutchins, Andrew R.
Cummings, M. L.
Draper, Mark
Hughes, Thomas
description A method for determining the self-confidence of autonomous systems is proposed to assist operators in understanding the state of unmanned vehicles under control. A sensing-optimization/verification-action (SOVA) model, similar to the perception-cognition-action human informational processing model, has been developed to illustrate how autonomous systems interact with their environment and how areas of uncertainty affect system performance. LIDAR and GPS were examined for scenarios where sensed surroundings could be inaccurate, while discrete and probabilistic algorithms were surveyed for situations that could result in path planning uncertainty. Likert scales were developed to represent sensor and algorithm uncertainties, and these scales laid the foundation for the proposed Trust Annunciator Panel (TAP) consisting of a series of uncertainty level indicators (ULIs). The TAP emphasizes the critical role of human judgment and oversight, especially when autonomous systems operate in clustered or dynamic environments.
doi_str_mv 10.1177/1541931215591057
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1541931215591057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1541931215591057</sage_id><sourcerecordid>10.1177_1541931215591057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2867-9f5cdaf5edc23a181c15474506fb3240f026d3d1d2f52402e7bdd2324f3fe1393</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqGwZ5kLGDx2HDfLEvEnVQJRWEdpPG5TNXZkJ4vuuAbX4yQ4KiskVqOZ997o0yPkGtgNgFK3IDMoBHCQsgAm1QlJOOQFlSxXpySZZDrp5-QihB1jXCiRJeT1DXuPAe3Q2k26GAdnXefGkK4OYcAufH9-pSvcG1o6a1qNtsF02Ho3brZp6boeh3g6pHdutLr2LYZLcmbqfcCr3zkjHw_37-UTXb48PpeLJW34PFe0MLLRtZGoGy5qmEMTCVUWac1a8IwZxnMtNGhuZFw5qrXWPCpGGARRiBlhx7-NdyF4NFXv2672hwpYNTVS_W0kRugxEuoNVjs3ehsJ__f_AE8yYgo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Representing Autonomous Systems’ Self-Confidence through Competency Boundaries</title><source>SAGE Complete A-Z List</source><creator>Hutchins, Andrew R. ; Cummings, M. L. ; Draper, Mark ; Hughes, Thomas</creator><creatorcontrib>Hutchins, Andrew R. ; Cummings, M. L. ; Draper, Mark ; Hughes, Thomas</creatorcontrib><description>A method for determining the self-confidence of autonomous systems is proposed to assist operators in understanding the state of unmanned vehicles under control. A sensing-optimization/verification-action (SOVA) model, similar to the perception-cognition-action human informational processing model, has been developed to illustrate how autonomous systems interact with their environment and how areas of uncertainty affect system performance. LIDAR and GPS were examined for scenarios where sensed surroundings could be inaccurate, while discrete and probabilistic algorithms were surveyed for situations that could result in path planning uncertainty. Likert scales were developed to represent sensor and algorithm uncertainties, and these scales laid the foundation for the proposed Trust Annunciator Panel (TAP) consisting of a series of uncertainty level indicators (ULIs). The TAP emphasizes the critical role of human judgment and oversight, especially when autonomous systems operate in clustered or dynamic environments.</description><identifier>ISSN: 1541-9312</identifier><identifier>ISSN: 1071-1813</identifier><identifier>EISSN: 2169-5067</identifier><identifier>DOI: 10.1177/1541931215591057</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2015-09, Vol.59 (1), p.279-283</ispartof><rights>2015 Human Factors and Ergonomics Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2867-9f5cdaf5edc23a181c15474506fb3240f026d3d1d2f52402e7bdd2324f3fe1393</citedby><cites>FETCH-LOGICAL-c2867-9f5cdaf5edc23a181c15474506fb3240f026d3d1d2f52402e7bdd2324f3fe1393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1541931215591057$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1541931215591057$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21817,27922,27923,43619,43620</link.rule.ids></links><search><creatorcontrib>Hutchins, Andrew R.</creatorcontrib><creatorcontrib>Cummings, M. L.</creatorcontrib><creatorcontrib>Draper, Mark</creatorcontrib><creatorcontrib>Hughes, Thomas</creatorcontrib><title>Representing Autonomous Systems’ Self-Confidence through Competency Boundaries</title><title>Proceedings of the Human Factors and Ergonomics Society Annual Meeting</title><description>A method for determining the self-confidence of autonomous systems is proposed to assist operators in understanding the state of unmanned vehicles under control. A sensing-optimization/verification-action (SOVA) model, similar to the perception-cognition-action human informational processing model, has been developed to illustrate how autonomous systems interact with their environment and how areas of uncertainty affect system performance. LIDAR and GPS were examined for scenarios where sensed surroundings could be inaccurate, while discrete and probabilistic algorithms were surveyed for situations that could result in path planning uncertainty. Likert scales were developed to represent sensor and algorithm uncertainties, and these scales laid the foundation for the proposed Trust Annunciator Panel (TAP) consisting of a series of uncertainty level indicators (ULIs). The TAP emphasizes the critical role of human judgment and oversight, especially when autonomous systems operate in clustered or dynamic environments.</description><issn>1541-9312</issn><issn>1071-1813</issn><issn>2169-5067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqGwZ5kLGDx2HDfLEvEnVQJRWEdpPG5TNXZkJ4vuuAbX4yQ4KiskVqOZ997o0yPkGtgNgFK3IDMoBHCQsgAm1QlJOOQFlSxXpySZZDrp5-QihB1jXCiRJeT1DXuPAe3Q2k26GAdnXefGkK4OYcAufH9-pSvcG1o6a1qNtsF02Ho3brZp6boeh3g6pHdutLr2LYZLcmbqfcCr3zkjHw_37-UTXb48PpeLJW34PFe0MLLRtZGoGy5qmEMTCVUWac1a8IwZxnMtNGhuZFw5qrXWPCpGGARRiBlhx7-NdyF4NFXv2672hwpYNTVS_W0kRugxEuoNVjs3ehsJ__f_AE8yYgo</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Hutchins, Andrew R.</creator><creator>Cummings, M. L.</creator><creator>Draper, Mark</creator><creator>Hughes, Thomas</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201509</creationdate><title>Representing Autonomous Systems’ Self-Confidence through Competency Boundaries</title><author>Hutchins, Andrew R. ; Cummings, M. L. ; Draper, Mark ; Hughes, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2867-9f5cdaf5edc23a181c15474506fb3240f026d3d1d2f52402e7bdd2324f3fe1393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutchins, Andrew R.</creatorcontrib><creatorcontrib>Cummings, M. L.</creatorcontrib><creatorcontrib>Draper, Mark</creatorcontrib><creatorcontrib>Hughes, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Human Factors and Ergonomics Society Annual Meeting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutchins, Andrew R.</au><au>Cummings, M. L.</au><au>Draper, Mark</au><au>Hughes, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representing Autonomous Systems’ Self-Confidence through Competency Boundaries</atitle><jtitle>Proceedings of the Human Factors and Ergonomics Society Annual Meeting</jtitle><date>2015-09</date><risdate>2015</risdate><volume>59</volume><issue>1</issue><spage>279</spage><epage>283</epage><pages>279-283</pages><issn>1541-9312</issn><issn>1071-1813</issn><eissn>2169-5067</eissn><abstract>A method for determining the self-confidence of autonomous systems is proposed to assist operators in understanding the state of unmanned vehicles under control. A sensing-optimization/verification-action (SOVA) model, similar to the perception-cognition-action human informational processing model, has been developed to illustrate how autonomous systems interact with their environment and how areas of uncertainty affect system performance. LIDAR and GPS were examined for scenarios where sensed surroundings could be inaccurate, while discrete and probabilistic algorithms were surveyed for situations that could result in path planning uncertainty. Likert scales were developed to represent sensor and algorithm uncertainties, and these scales laid the foundation for the proposed Trust Annunciator Panel (TAP) consisting of a series of uncertainty level indicators (ULIs). The TAP emphasizes the critical role of human judgment and oversight, especially when autonomous systems operate in clustered or dynamic environments.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/1541931215591057</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1541-9312
ispartof Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2015-09, Vol.59 (1), p.279-283
issn 1541-9312
1071-1813
2169-5067
language eng
recordid cdi_crossref_primary_10_1177_1541931215591057
source SAGE Complete A-Z List
title Representing Autonomous Systems’ Self-Confidence through Competency Boundaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representing%20Autonomous%20Systems%E2%80%99%20Self-Confidence%20through%20Competency%20Boundaries&rft.jtitle=Proceedings%20of%20the%20Human%20Factors%20and%20Ergonomics%20Society%20Annual%20Meeting&rft.au=Hutchins,%20Andrew%20R.&rft.date=2015-09&rft.volume=59&rft.issue=1&rft.spage=279&rft.epage=283&rft.pages=279-283&rft.issn=1541-9312&rft.eissn=2169-5067&rft_id=info:doi/10.1177/1541931215591057&rft_dat=%3Csage_cross%3E10.1177_1541931215591057%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1541931215591057&rfr_iscdi=true