Representing Autonomous Systems’ Self-Confidence through Competency Boundaries
A method for determining the self-confidence of autonomous systems is proposed to assist operators in understanding the state of unmanned vehicles under control. A sensing-optimization/verification-action (SOVA) model, similar to the perception-cognition-action human informational processing model,...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2015-09, Vol.59 (1), p.279-283 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 283 |
---|---|
container_issue | 1 |
container_start_page | 279 |
container_title | Proceedings of the Human Factors and Ergonomics Society Annual Meeting |
container_volume | 59 |
creator | Hutchins, Andrew R. Cummings, M. L. Draper, Mark Hughes, Thomas |
description | A method for determining the self-confidence of autonomous systems is proposed to assist operators in understanding the state of unmanned vehicles under control. A sensing-optimization/verification-action (SOVA) model, similar to the perception-cognition-action human informational processing model, has been developed to illustrate how autonomous systems interact with their environment and how areas of uncertainty affect system performance. LIDAR and GPS were examined for scenarios where sensed surroundings could be inaccurate, while discrete and probabilistic algorithms were surveyed for situations that could result in path planning uncertainty. Likert scales were developed to represent sensor and algorithm uncertainties, and these scales laid the foundation for the proposed Trust Annunciator Panel (TAP) consisting of a series of uncertainty level indicators (ULIs). The TAP emphasizes the critical role of human judgment and oversight, especially when autonomous systems operate in clustered or dynamic environments. |
doi_str_mv | 10.1177/1541931215591057 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1541931215591057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1541931215591057</sage_id><sourcerecordid>10.1177_1541931215591057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2867-9f5cdaf5edc23a181c15474506fb3240f026d3d1d2f52402e7bdd2324f3fe1393</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqGwZ5kLGDx2HDfLEvEnVQJRWEdpPG5TNXZkJ4vuuAbX4yQ4KiskVqOZ997o0yPkGtgNgFK3IDMoBHCQsgAm1QlJOOQFlSxXpySZZDrp5-QihB1jXCiRJeT1DXuPAe3Q2k26GAdnXefGkK4OYcAufH9-pSvcG1o6a1qNtsF02Ho3brZp6boeh3g6pHdutLr2LYZLcmbqfcCr3zkjHw_37-UTXb48PpeLJW34PFe0MLLRtZGoGy5qmEMTCVUWac1a8IwZxnMtNGhuZFw5qrXWPCpGGARRiBlhx7-NdyF4NFXv2672hwpYNTVS_W0kRugxEuoNVjs3ehsJ__f_AE8yYgo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Representing Autonomous Systems’ Self-Confidence through Competency Boundaries</title><source>SAGE Complete A-Z List</source><creator>Hutchins, Andrew R. ; Cummings, M. L. ; Draper, Mark ; Hughes, Thomas</creator><creatorcontrib>Hutchins, Andrew R. ; Cummings, M. L. ; Draper, Mark ; Hughes, Thomas</creatorcontrib><description>A method for determining the self-confidence of autonomous systems is proposed to assist operators in understanding the state of unmanned vehicles under control. A sensing-optimization/verification-action (SOVA) model, similar to the perception-cognition-action human informational processing model, has been developed to illustrate how autonomous systems interact with their environment and how areas of uncertainty affect system performance. LIDAR and GPS were examined for scenarios where sensed surroundings could be inaccurate, while discrete and probabilistic algorithms were surveyed for situations that could result in path planning uncertainty. Likert scales were developed to represent sensor and algorithm uncertainties, and these scales laid the foundation for the proposed Trust Annunciator Panel (TAP) consisting of a series of uncertainty level indicators (ULIs). The TAP emphasizes the critical role of human judgment and oversight, especially when autonomous systems operate in clustered or dynamic environments.</description><identifier>ISSN: 1541-9312</identifier><identifier>ISSN: 1071-1813</identifier><identifier>EISSN: 2169-5067</identifier><identifier>DOI: 10.1177/1541931215591057</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2015-09, Vol.59 (1), p.279-283</ispartof><rights>2015 Human Factors and Ergonomics Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2867-9f5cdaf5edc23a181c15474506fb3240f026d3d1d2f52402e7bdd2324f3fe1393</citedby><cites>FETCH-LOGICAL-c2867-9f5cdaf5edc23a181c15474506fb3240f026d3d1d2f52402e7bdd2324f3fe1393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1541931215591057$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1541931215591057$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21817,27922,27923,43619,43620</link.rule.ids></links><search><creatorcontrib>Hutchins, Andrew R.</creatorcontrib><creatorcontrib>Cummings, M. L.</creatorcontrib><creatorcontrib>Draper, Mark</creatorcontrib><creatorcontrib>Hughes, Thomas</creatorcontrib><title>Representing Autonomous Systems’ Self-Confidence through Competency Boundaries</title><title>Proceedings of the Human Factors and Ergonomics Society Annual Meeting</title><description>A method for determining the self-confidence of autonomous systems is proposed to assist operators in understanding the state of unmanned vehicles under control. A sensing-optimization/verification-action (SOVA) model, similar to the perception-cognition-action human informational processing model, has been developed to illustrate how autonomous systems interact with their environment and how areas of uncertainty affect system performance. LIDAR and GPS were examined for scenarios where sensed surroundings could be inaccurate, while discrete and probabilistic algorithms were surveyed for situations that could result in path planning uncertainty. Likert scales were developed to represent sensor and algorithm uncertainties, and these scales laid the foundation for the proposed Trust Annunciator Panel (TAP) consisting of a series of uncertainty level indicators (ULIs). The TAP emphasizes the critical role of human judgment and oversight, especially when autonomous systems operate in clustered or dynamic environments.</description><issn>1541-9312</issn><issn>1071-1813</issn><issn>2169-5067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqGwZ5kLGDx2HDfLEvEnVQJRWEdpPG5TNXZkJ4vuuAbX4yQ4KiskVqOZ997o0yPkGtgNgFK3IDMoBHCQsgAm1QlJOOQFlSxXpySZZDrp5-QihB1jXCiRJeT1DXuPAe3Q2k26GAdnXefGkK4OYcAufH9-pSvcG1o6a1qNtsF02Ho3brZp6boeh3g6pHdutLr2LYZLcmbqfcCr3zkjHw_37-UTXb48PpeLJW34PFe0MLLRtZGoGy5qmEMTCVUWac1a8IwZxnMtNGhuZFw5qrXWPCpGGARRiBlhx7-NdyF4NFXv2672hwpYNTVS_W0kRugxEuoNVjs3ehsJ__f_AE8yYgo</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Hutchins, Andrew R.</creator><creator>Cummings, M. L.</creator><creator>Draper, Mark</creator><creator>Hughes, Thomas</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201509</creationdate><title>Representing Autonomous Systems’ Self-Confidence through Competency Boundaries</title><author>Hutchins, Andrew R. ; Cummings, M. L. ; Draper, Mark ; Hughes, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2867-9f5cdaf5edc23a181c15474506fb3240f026d3d1d2f52402e7bdd2324f3fe1393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutchins, Andrew R.</creatorcontrib><creatorcontrib>Cummings, M. L.</creatorcontrib><creatorcontrib>Draper, Mark</creatorcontrib><creatorcontrib>Hughes, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Human Factors and Ergonomics Society Annual Meeting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutchins, Andrew R.</au><au>Cummings, M. L.</au><au>Draper, Mark</au><au>Hughes, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representing Autonomous Systems’ Self-Confidence through Competency Boundaries</atitle><jtitle>Proceedings of the Human Factors and Ergonomics Society Annual Meeting</jtitle><date>2015-09</date><risdate>2015</risdate><volume>59</volume><issue>1</issue><spage>279</spage><epage>283</epage><pages>279-283</pages><issn>1541-9312</issn><issn>1071-1813</issn><eissn>2169-5067</eissn><abstract>A method for determining the self-confidence of autonomous systems is proposed to assist operators in understanding the state of unmanned vehicles under control. A sensing-optimization/verification-action (SOVA) model, similar to the perception-cognition-action human informational processing model, has been developed to illustrate how autonomous systems interact with their environment and how areas of uncertainty affect system performance. LIDAR and GPS were examined for scenarios where sensed surroundings could be inaccurate, while discrete and probabilistic algorithms were surveyed for situations that could result in path planning uncertainty. Likert scales were developed to represent sensor and algorithm uncertainties, and these scales laid the foundation for the proposed Trust Annunciator Panel (TAP) consisting of a series of uncertainty level indicators (ULIs). The TAP emphasizes the critical role of human judgment and oversight, especially when autonomous systems operate in clustered or dynamic environments.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/1541931215591057</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1541-9312 |
ispartof | Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2015-09, Vol.59 (1), p.279-283 |
issn | 1541-9312 1071-1813 2169-5067 |
language | eng |
recordid | cdi_crossref_primary_10_1177_1541931215591057 |
source | SAGE Complete A-Z List |
title | Representing Autonomous Systems’ Self-Confidence through Competency Boundaries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representing%20Autonomous%20Systems%E2%80%99%20Self-Confidence%20through%20Competency%20Boundaries&rft.jtitle=Proceedings%20of%20the%20Human%20Factors%20and%20Ergonomics%20Society%20Annual%20Meeting&rft.au=Hutchins,%20Andrew%20R.&rft.date=2015-09&rft.volume=59&rft.issue=1&rft.spage=279&rft.epage=283&rft.pages=279-283&rft.issn=1541-9312&rft.eissn=2169-5067&rft_id=info:doi/10.1177/1541931215591057&rft_dat=%3Csage_cross%3E10.1177_1541931215591057%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1541931215591057&rfr_iscdi=true |