Comparison of Multiple Physiological Sensors to Classify Operator State in Adaptive Automation Systems
Automating tasks alleviates operator resources to be delegated to other demands, but the cost is often situation awareness. In contrast, complete manual control of a system opens the door for greater human error. Therefore, an ideal situation would require the development of an adaptive system in wh...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2010-09, Vol.54 (3), p.195-199 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | 3 |
container_start_page | 195 |
container_title | Proceedings of the Human Factors and Ergonomics Society Annual Meeting |
container_volume | 54 |
creator | Taylor, Grant Reinerman-Jones, Lauren Cosenzo, Keryl Nicholson, Denise |
description | Automating tasks alleviates operator resources to be delegated to other demands, but the cost is often situation awareness. In contrast, complete manual control of a system opens the door for greater human error. Therefore, an ideal situation would require the development of an adaptive system in which automation can be triggered based on performance of a particular task, time spent on the task, or perhaps physiological response. The latter pertains to the goal for this particular study. Electroencephalogram (EEG), electrocardiogram (ECG), and eye tracking measures were recorded during six multi-tasking scenarios to assess if any one single measure is best suited for future implementation as an automation invocation. EEG showed the greatest potential for that purpose. |
doi_str_mv | 10.1177/154193121005400302 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_154193121005400302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_154193121005400302</sage_id><sourcerecordid>10.1177_154193121005400302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1322-636b486f47505a9f0e076432657869ddbcc60a37ea0930cd2156228068e24b643</originalsourceid><addsrcrecordid>eNp9kMtKw0AYhQdRsFZfwNW8QOw_92RZgjeoVKiuwzSZqVOSTJiZCHl7U-pOcHU233c4HITuCTwQotSKCE4KRigBEByAAb1AC0pkkQmQ6hItTkB2Iq7RTYxHAMoU4wtkS98NOrjoe-wtfhvb5IbW4PevKTrf-oOrdYt3po8-RJw8Llsdo7MT3g4m6OQD3iWdDHY9Xjd6SO7b4PWYfKeTmzt3U0ymi7foyuo2mrvfXKLPp8eP8iXbbJ9fy_UmqwmjNJNM7nkuLVcChC4sGFCSMyqFymXRNPu6lqCZMhoKBnVDiZCU5iBzQ_l-JpeInnvr4GMMxlZDcJ0OU0WgOj1V_X1qllZnKeqDqY5-DP288T_jB-iuaLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of Multiple Physiological Sensors to Classify Operator State in Adaptive Automation Systems</title><source>Access via SAGE</source><creator>Taylor, Grant ; Reinerman-Jones, Lauren ; Cosenzo, Keryl ; Nicholson, Denise</creator><creatorcontrib>Taylor, Grant ; Reinerman-Jones, Lauren ; Cosenzo, Keryl ; Nicholson, Denise</creatorcontrib><description>Automating tasks alleviates operator resources to be delegated to other demands, but the cost is often situation awareness. In contrast, complete manual control of a system opens the door for greater human error. Therefore, an ideal situation would require the development of an adaptive system in which automation can be triggered based on performance of a particular task, time spent on the task, or perhaps physiological response. The latter pertains to the goal for this particular study. Electroencephalogram (EEG), electrocardiogram (ECG), and eye tracking measures were recorded during six multi-tasking scenarios to assess if any one single measure is best suited for future implementation as an automation invocation. EEG showed the greatest potential for that purpose.</description><identifier>ISSN: 1541-9312</identifier><identifier>ISSN: 1071-1813</identifier><identifier>EISSN: 2169-5067</identifier><identifier>DOI: 10.1177/154193121005400302</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2010-09, Vol.54 (3), p.195-199</ispartof><rights>2010 Human Factors and Ergonomics Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1322-636b486f47505a9f0e076432657869ddbcc60a37ea0930cd2156228068e24b643</citedby><cites>FETCH-LOGICAL-c1322-636b486f47505a9f0e076432657869ddbcc60a37ea0930cd2156228068e24b643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/154193121005400302$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/154193121005400302$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Taylor, Grant</creatorcontrib><creatorcontrib>Reinerman-Jones, Lauren</creatorcontrib><creatorcontrib>Cosenzo, Keryl</creatorcontrib><creatorcontrib>Nicholson, Denise</creatorcontrib><title>Comparison of Multiple Physiological Sensors to Classify Operator State in Adaptive Automation Systems</title><title>Proceedings of the Human Factors and Ergonomics Society Annual Meeting</title><description>Automating tasks alleviates operator resources to be delegated to other demands, but the cost is often situation awareness. In contrast, complete manual control of a system opens the door for greater human error. Therefore, an ideal situation would require the development of an adaptive system in which automation can be triggered based on performance of a particular task, time spent on the task, or perhaps physiological response. The latter pertains to the goal for this particular study. Electroencephalogram (EEG), electrocardiogram (ECG), and eye tracking measures were recorded during six multi-tasking scenarios to assess if any one single measure is best suited for future implementation as an automation invocation. EEG showed the greatest potential for that purpose.</description><issn>1541-9312</issn><issn>1071-1813</issn><issn>2169-5067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKw0AYhQdRsFZfwNW8QOw_92RZgjeoVKiuwzSZqVOSTJiZCHl7U-pOcHU233c4HITuCTwQotSKCE4KRigBEByAAb1AC0pkkQmQ6hItTkB2Iq7RTYxHAMoU4wtkS98NOrjoe-wtfhvb5IbW4PevKTrf-oOrdYt3po8-RJw8Llsdo7MT3g4m6OQD3iWdDHY9Xjd6SO7b4PWYfKeTmzt3U0ymi7foyuo2mrvfXKLPp8eP8iXbbJ9fy_UmqwmjNJNM7nkuLVcChC4sGFCSMyqFymXRNPu6lqCZMhoKBnVDiZCU5iBzQ_l-JpeInnvr4GMMxlZDcJ0OU0WgOj1V_X1qllZnKeqDqY5-DP288T_jB-iuaLA</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Taylor, Grant</creator><creator>Reinerman-Jones, Lauren</creator><creator>Cosenzo, Keryl</creator><creator>Nicholson, Denise</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201009</creationdate><title>Comparison of Multiple Physiological Sensors to Classify Operator State in Adaptive Automation Systems</title><author>Taylor, Grant ; Reinerman-Jones, Lauren ; Cosenzo, Keryl ; Nicholson, Denise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1322-636b486f47505a9f0e076432657869ddbcc60a37ea0930cd2156228068e24b643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Grant</creatorcontrib><creatorcontrib>Reinerman-Jones, Lauren</creatorcontrib><creatorcontrib>Cosenzo, Keryl</creatorcontrib><creatorcontrib>Nicholson, Denise</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Human Factors and Ergonomics Society Annual Meeting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Grant</au><au>Reinerman-Jones, Lauren</au><au>Cosenzo, Keryl</au><au>Nicholson, Denise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Multiple Physiological Sensors to Classify Operator State in Adaptive Automation Systems</atitle><jtitle>Proceedings of the Human Factors and Ergonomics Society Annual Meeting</jtitle><date>2010-09</date><risdate>2010</risdate><volume>54</volume><issue>3</issue><spage>195</spage><epage>199</epage><pages>195-199</pages><issn>1541-9312</issn><issn>1071-1813</issn><eissn>2169-5067</eissn><abstract>Automating tasks alleviates operator resources to be delegated to other demands, but the cost is often situation awareness. In contrast, complete manual control of a system opens the door for greater human error. Therefore, an ideal situation would require the development of an adaptive system in which automation can be triggered based on performance of a particular task, time spent on the task, or perhaps physiological response. The latter pertains to the goal for this particular study. Electroencephalogram (EEG), electrocardiogram (ECG), and eye tracking measures were recorded during six multi-tasking scenarios to assess if any one single measure is best suited for future implementation as an automation invocation. EEG showed the greatest potential for that purpose.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/154193121005400302</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1541-9312 |
ispartof | Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2010-09, Vol.54 (3), p.195-199 |
issn | 1541-9312 1071-1813 2169-5067 |
language | eng |
recordid | cdi_crossref_primary_10_1177_154193121005400302 |
source | Access via SAGE |
title | Comparison of Multiple Physiological Sensors to Classify Operator State in Adaptive Automation Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A23%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Multiple%20Physiological%20Sensors%20to%20Classify%20Operator%20State%20in%20Adaptive%20Automation%20Systems&rft.jtitle=Proceedings%20of%20the%20Human%20Factors%20and%20Ergonomics%20Society%20Annual%20Meeting&rft.au=Taylor,%20Grant&rft.date=2010-09&rft.volume=54&rft.issue=3&rft.spage=195&rft.epage=199&rft.pages=195-199&rft.issn=1541-9312&rft.eissn=2169-5067&rft_id=info:doi/10.1177/154193121005400302&rft_dat=%3Csage_cross%3E10.1177_154193121005400302%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_154193121005400302&rfr_iscdi=true |