Fast and wild: Bootstrap inference in Stata using boottest

The wild bootstrap was originally developed for regression models with heteroskedasticity of unknown form. Over the past 30 years, it has been extended to models estimated by instrumental variables and maximum likelihood and to ones where the error terms are (perhaps multiway) clustered. Like bootst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Stata journal 2019-03, Vol.19 (1), p.4-60
Hauptverfasser: Roodman, David, Nielsen, Morten Ørregaard, MacKinnon, James G., Webb, Matthew D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 4
container_title The Stata journal
container_volume 19
creator Roodman, David
Nielsen, Morten Ørregaard
MacKinnon, James G.
Webb, Matthew D.
description The wild bootstrap was originally developed for regression models with heteroskedasticity of unknown form. Over the past 30 years, it has been extended to models estimated by instrumental variables and maximum likelihood and to ones where the error terms are (perhaps multiway) clustered. Like bootstrap methods in general, the wild bootstrap is especially useful when conventional inference methods are unreliable because large-sample assumptions do not hold. For example, there may be few clusters, few treated clusters, or weak instruments. The package boottest can perform a wide variety of wild bootstrap tests, often at remarkable speed. It can also invert these tests to construct confidence sets. As a postestimation command, boottest works after linear estimation commands, including regress, cnsreg, ivregress, ivreg2, areg, and reghdfe, as well as many estimation commands based on maximum likelihood. Although it is designed to perform the wild cluster bootstrap, boottest can also perform the ordinary (nonclustered) version. Wrappers offer classical Wald, score/Lagrange multiplier, and Anderson–Rubin tests, optionally with (multiway) clustering. We review the main ideas of the wild cluster bootstrap, offer tips for use, explain why it is particularly amenable to computational optimization, state the syntax of boottest, artest, scoretest, and waldtest, and present several empirical examples.
doi_str_mv 10.1177/1536867X19830877
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1536867X19830877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1536867X19830877</sage_id><sourcerecordid>10.1177_1536867X19830877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-491953ef1798fb5eddf761e7cd5c4515e12893393185758d469e2b816a4bc22c3</originalsourceid><addsrcrecordid>eNp1T8tKAzEUDaJgre5d5gdG5-ad7rTYKhRcqOBuyCQ3ZUqdKUmK-PdOqW4EV_dwz4NzCLmG-gZA61uQXBml38EaXhutT8jk8KqM5uL0F4_8ObnIeVPXQgNjEzJbuFyo6wP97LZhRu-HoeSS3I52fcSEvccR0ZfiiqP73PVr2o6SgrlckrPothmvfu6UvC0eXueP1ep5-TS_W1VecFUqYcFKjhG0NbGVGELUClD7IL2QIBGYsZxbDkZqaYJQFllrQDnResY8n5L6mOvTkHPC2OxS9-HSVwN1c9je_N0-WqqjJbs1Npthn_qx4f_6b-4vWGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fast and wild: Bootstrap inference in Stata using boottest</title><source>Access via SAGE</source><source>Alma/SFX Local Collection</source><creator>Roodman, David ; Nielsen, Morten Ørregaard ; MacKinnon, James G. ; Webb, Matthew D.</creator><creatorcontrib>Roodman, David ; Nielsen, Morten Ørregaard ; MacKinnon, James G. ; Webb, Matthew D.</creatorcontrib><description>The wild bootstrap was originally developed for regression models with heteroskedasticity of unknown form. Over the past 30 years, it has been extended to models estimated by instrumental variables and maximum likelihood and to ones where the error terms are (perhaps multiway) clustered. Like bootstrap methods in general, the wild bootstrap is especially useful when conventional inference methods are unreliable because large-sample assumptions do not hold. For example, there may be few clusters, few treated clusters, or weak instruments. The package boottest can perform a wide variety of wild bootstrap tests, often at remarkable speed. It can also invert these tests to construct confidence sets. As a postestimation command, boottest works after linear estimation commands, including regress, cnsreg, ivregress, ivreg2, areg, and reghdfe, as well as many estimation commands based on maximum likelihood. Although it is designed to perform the wild cluster bootstrap, boottest can also perform the ordinary (nonclustered) version. Wrappers offer classical Wald, score/Lagrange multiplier, and Anderson–Rubin tests, optionally with (multiway) clustering. We review the main ideas of the wild cluster bootstrap, offer tips for use, explain why it is particularly amenable to computational optimization, state the syntax of boottest, artest, scoretest, and waldtest, and present several empirical examples.</description><identifier>ISSN: 1536-867X</identifier><identifier>EISSN: 1536-8734</identifier><identifier>DOI: 10.1177/1536867X19830877</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>The Stata journal, 2019-03, Vol.19 (1), p.4-60</ispartof><rights>2019 StataCorp LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-491953ef1798fb5eddf761e7cd5c4515e12893393185758d469e2b816a4bc22c3</citedby><cites>FETCH-LOGICAL-c436t-491953ef1798fb5eddf761e7cd5c4515e12893393185758d469e2b816a4bc22c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1536867X19830877$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1536867X19830877$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Roodman, David</creatorcontrib><creatorcontrib>Nielsen, Morten Ørregaard</creatorcontrib><creatorcontrib>MacKinnon, James G.</creatorcontrib><creatorcontrib>Webb, Matthew D.</creatorcontrib><title>Fast and wild: Bootstrap inference in Stata using boottest</title><title>The Stata journal</title><description>The wild bootstrap was originally developed for regression models with heteroskedasticity of unknown form. Over the past 30 years, it has been extended to models estimated by instrumental variables and maximum likelihood and to ones where the error terms are (perhaps multiway) clustered. Like bootstrap methods in general, the wild bootstrap is especially useful when conventional inference methods are unreliable because large-sample assumptions do not hold. For example, there may be few clusters, few treated clusters, or weak instruments. The package boottest can perform a wide variety of wild bootstrap tests, often at remarkable speed. It can also invert these tests to construct confidence sets. As a postestimation command, boottest works after linear estimation commands, including regress, cnsreg, ivregress, ivreg2, areg, and reghdfe, as well as many estimation commands based on maximum likelihood. Although it is designed to perform the wild cluster bootstrap, boottest can also perform the ordinary (nonclustered) version. Wrappers offer classical Wald, score/Lagrange multiplier, and Anderson–Rubin tests, optionally with (multiway) clustering. We review the main ideas of the wild cluster bootstrap, offer tips for use, explain why it is particularly amenable to computational optimization, state the syntax of boottest, artest, scoretest, and waldtest, and present several empirical examples.</description><issn>1536-867X</issn><issn>1536-8734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1T8tKAzEUDaJgre5d5gdG5-ad7rTYKhRcqOBuyCQ3ZUqdKUmK-PdOqW4EV_dwz4NzCLmG-gZA61uQXBml38EaXhutT8jk8KqM5uL0F4_8ObnIeVPXQgNjEzJbuFyo6wP97LZhRu-HoeSS3I52fcSEvccR0ZfiiqP73PVr2o6SgrlckrPothmvfu6UvC0eXueP1ep5-TS_W1VecFUqYcFKjhG0NbGVGELUClD7IL2QIBGYsZxbDkZqaYJQFllrQDnResY8n5L6mOvTkHPC2OxS9-HSVwN1c9je_N0-WqqjJbs1Npthn_qx4f_6b-4vWGg</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Roodman, David</creator><creator>Nielsen, Morten Ørregaard</creator><creator>MacKinnon, James G.</creator><creator>Webb, Matthew D.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201903</creationdate><title>Fast and wild: Bootstrap inference in Stata using boottest</title><author>Roodman, David ; Nielsen, Morten Ørregaard ; MacKinnon, James G. ; Webb, Matthew D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-491953ef1798fb5eddf761e7cd5c4515e12893393185758d469e2b816a4bc22c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roodman, David</creatorcontrib><creatorcontrib>Nielsen, Morten Ørregaard</creatorcontrib><creatorcontrib>MacKinnon, James G.</creatorcontrib><creatorcontrib>Webb, Matthew D.</creatorcontrib><collection>CrossRef</collection><jtitle>The Stata journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roodman, David</au><au>Nielsen, Morten Ørregaard</au><au>MacKinnon, James G.</au><au>Webb, Matthew D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and wild: Bootstrap inference in Stata using boottest</atitle><jtitle>The Stata journal</jtitle><date>2019-03</date><risdate>2019</risdate><volume>19</volume><issue>1</issue><spage>4</spage><epage>60</epage><pages>4-60</pages><issn>1536-867X</issn><eissn>1536-8734</eissn><abstract>The wild bootstrap was originally developed for regression models with heteroskedasticity of unknown form. Over the past 30 years, it has been extended to models estimated by instrumental variables and maximum likelihood and to ones where the error terms are (perhaps multiway) clustered. Like bootstrap methods in general, the wild bootstrap is especially useful when conventional inference methods are unreliable because large-sample assumptions do not hold. For example, there may be few clusters, few treated clusters, or weak instruments. The package boottest can perform a wide variety of wild bootstrap tests, often at remarkable speed. It can also invert these tests to construct confidence sets. As a postestimation command, boottest works after linear estimation commands, including regress, cnsreg, ivregress, ivreg2, areg, and reghdfe, as well as many estimation commands based on maximum likelihood. Although it is designed to perform the wild cluster bootstrap, boottest can also perform the ordinary (nonclustered) version. Wrappers offer classical Wald, score/Lagrange multiplier, and Anderson–Rubin tests, optionally with (multiway) clustering. We review the main ideas of the wild cluster bootstrap, offer tips for use, explain why it is particularly amenable to computational optimization, state the syntax of boottest, artest, scoretest, and waldtest, and present several empirical examples.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/1536867X19830877</doi><tpages>57</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1536-867X
ispartof The Stata journal, 2019-03, Vol.19 (1), p.4-60
issn 1536-867X
1536-8734
language eng
recordid cdi_crossref_primary_10_1177_1536867X19830877
source Access via SAGE; Alma/SFX Local Collection
title Fast and wild: Bootstrap inference in Stata using boottest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20wild:%20Bootstrap%20inference%20in%20Stata%20using%20boottest&rft.jtitle=The%20Stata%20journal&rft.au=Roodman,%20David&rft.date=2019-03&rft.volume=19&rft.issue=1&rft.spage=4&rft.epage=60&rft.pages=4-60&rft.issn=1536-867X&rft.eissn=1536-8734&rft_id=info:doi/10.1177/1536867X19830877&rft_dat=%3Csage_cross%3E10.1177_1536867X19830877%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1536867X19830877&rfr_iscdi=true