Bicomponent melt spinning of polyamide 6/carbon nanotube/carbon black filaments: Investigation of effect of melt mass-flow rate on electrical conductivity
Combining the several mixed phase structures and property profiles with a conductive, high aspect ratios nanofiller such as carbon nanotubes, graphene, and carbon black, specific morphological structures in melt spinning can be reached that offer much more potential for developing new functional fib...
Gespeichert in:
Veröffentlicht in: | Journal of industrial textiles 2023-06, Vol.53 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of industrial textiles |
container_volume | 53 |
creator | Kaplan, Müslüm Ortega, Jeanette Krooß, Felix Gries, Thomas |
description | Combining the several mixed phase structures and property profiles with a conductive, high aspect ratios nanofiller such as carbon nanotubes, graphene, and carbon black, specific morphological structures in melt spinning can be reached that offer much more potential for developing new functional fibers. Thus, understanding and controlling filler localization inside the developing phase morphology during melt spinning are the keys to the necessary structures. This work aimed to offer the possibility of producing fibers from electrically conductive polymer composites with a high filler concentration. First, the influence of different commercially available nanofillers, such as multi-wall carbon nanotubes (MWCNTs), graphene and carbon black on Polyamide 6 (PA6)-based nanocomposite melt-spun fibers were examined. Following the lab-scale melt spinning experiments, PA6/MWCNT-CB nanocomposite filaments containing 10 wt% nanofiller (each 5 wt%), were chosen for a pilot-scale bicomponent melt spinning process to investigate the influence of the nanocomposite core material feeding parameters on the properties of melt-spun fibers. The electrical conductivity decreased by half (from 3.13E-02 to 6.72E-03) when melt flow rate was increased from 3 g/min to 6 g/min. Scanning electron microscopy micrographs and thermal gravimetric analysis thermograms showed that the change in MFR values significantly affected the nanocomposite filaments’ surface properties. |
doi_str_mv | 10.1177/15280837231186174 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_15280837231186174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_15280837231186174</sage_id><sourcerecordid>10.1177_15280837231186174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-cdaab086646d39407c6da7a4e7e076d853aba2dcf85096006f8a973a13fa61933</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhSMEEqVwAHa-QFr_JLbDDip-KiGxgXU0cezKJbEj2y3qVTgtCYUVEqt5o3nv0-hl2TXBC0KEWJKSSiyZoIwQyYkoTrIZKRnOJS7F6aSpzCfDeXYR4xZjTAWls-zzzirfD95pl1Cvu4TiYJ2zboO8QYPvDtDbViO-VBAa75AD59Ou0b9704F6R8Z20I-IeIPWbq9jshtIdjyPEG2MVmlS3_weYsxN5z9QgKTR6NHdeA9WQYeUd-1OJbu36XCZnRnoor76mfPs7eH-dfWUP788rle3z7liVKRctQANlpwXvGVVgYXiLQgotNBY8FaWDBqgrTKyxBXHmBsJlWBAmAFOKsbmGTlyVfAxBm3qIdgewqEmuJ7Krf-UO2YWx0yEja63fhfc-OI_gS-5_H1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bicomponent melt spinning of polyamide 6/carbon nanotube/carbon black filaments: Investigation of effect of melt mass-flow rate on electrical conductivity</title><source>Sage Journals GOLD Open Access 2024</source><source>Alma/SFX Local Collection</source><creator>Kaplan, Müslüm ; Ortega, Jeanette ; Krooß, Felix ; Gries, Thomas</creator><creatorcontrib>Kaplan, Müslüm ; Ortega, Jeanette ; Krooß, Felix ; Gries, Thomas</creatorcontrib><description>Combining the several mixed phase structures and property profiles with a conductive, high aspect ratios nanofiller such as carbon nanotubes, graphene, and carbon black, specific morphological structures in melt spinning can be reached that offer much more potential for developing new functional fibers. Thus, understanding and controlling filler localization inside the developing phase morphology during melt spinning are the keys to the necessary structures. This work aimed to offer the possibility of producing fibers from electrically conductive polymer composites with a high filler concentration. First, the influence of different commercially available nanofillers, such as multi-wall carbon nanotubes (MWCNTs), graphene and carbon black on Polyamide 6 (PA6)-based nanocomposite melt-spun fibers were examined. Following the lab-scale melt spinning experiments, PA6/MWCNT-CB nanocomposite filaments containing 10 wt% nanofiller (each 5 wt%), were chosen for a pilot-scale bicomponent melt spinning process to investigate the influence of the nanocomposite core material feeding parameters on the properties of melt-spun fibers. The electrical conductivity decreased by half (from 3.13E-02 to 6.72E-03) when melt flow rate was increased from 3 g/min to 6 g/min. Scanning electron microscopy micrographs and thermal gravimetric analysis thermograms showed that the change in MFR values significantly affected the nanocomposite filaments’ surface properties.</description><identifier>ISSN: 1528-0837</identifier><identifier>EISSN: 1530-8057</identifier><identifier>DOI: 10.1177/15280837231186174</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Journal of industrial textiles, 2023-06, Vol.53</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-cdaab086646d39407c6da7a4e7e076d853aba2dcf85096006f8a973a13fa61933</citedby><cites>FETCH-LOGICAL-c327t-cdaab086646d39407c6da7a4e7e076d853aba2dcf85096006f8a973a13fa61933</cites><orcidid>0000-0002-8410-4688 ; 0000-0003-2326-8096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/15280837231186174$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/15280837231186174$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21966,27853,27924,27925,44945,45333</link.rule.ids></links><search><creatorcontrib>Kaplan, Müslüm</creatorcontrib><creatorcontrib>Ortega, Jeanette</creatorcontrib><creatorcontrib>Krooß, Felix</creatorcontrib><creatorcontrib>Gries, Thomas</creatorcontrib><title>Bicomponent melt spinning of polyamide 6/carbon nanotube/carbon black filaments: Investigation of effect of melt mass-flow rate on electrical conductivity</title><title>Journal of industrial textiles</title><description>Combining the several mixed phase structures and property profiles with a conductive, high aspect ratios nanofiller such as carbon nanotubes, graphene, and carbon black, specific morphological structures in melt spinning can be reached that offer much more potential for developing new functional fibers. Thus, understanding and controlling filler localization inside the developing phase morphology during melt spinning are the keys to the necessary structures. This work aimed to offer the possibility of producing fibers from electrically conductive polymer composites with a high filler concentration. First, the influence of different commercially available nanofillers, such as multi-wall carbon nanotubes (MWCNTs), graphene and carbon black on Polyamide 6 (PA6)-based nanocomposite melt-spun fibers were examined. Following the lab-scale melt spinning experiments, PA6/MWCNT-CB nanocomposite filaments containing 10 wt% nanofiller (each 5 wt%), were chosen for a pilot-scale bicomponent melt spinning process to investigate the influence of the nanocomposite core material feeding parameters on the properties of melt-spun fibers. The electrical conductivity decreased by half (from 3.13E-02 to 6.72E-03) when melt flow rate was increased from 3 g/min to 6 g/min. Scanning electron microscopy micrographs and thermal gravimetric analysis thermograms showed that the change in MFR values significantly affected the nanocomposite filaments’ surface properties.</description><issn>1528-0837</issn><issn>1530-8057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp9kE1OwzAQhSMEEqVwAHa-QFr_JLbDDip-KiGxgXU0cezKJbEj2y3qVTgtCYUVEqt5o3nv0-hl2TXBC0KEWJKSSiyZoIwQyYkoTrIZKRnOJS7F6aSpzCfDeXYR4xZjTAWls-zzzirfD95pl1Cvu4TiYJ2zboO8QYPvDtDbViO-VBAa75AD59Ou0b9704F6R8Z20I-IeIPWbq9jshtIdjyPEG2MVmlS3_weYsxN5z9QgKTR6NHdeA9WQYeUd-1OJbu36XCZnRnoor76mfPs7eH-dfWUP788rle3z7liVKRctQANlpwXvGVVgYXiLQgotNBY8FaWDBqgrTKyxBXHmBsJlWBAmAFOKsbmGTlyVfAxBm3qIdgewqEmuJ7Krf-UO2YWx0yEja63fhfc-OI_gS-5_H1w</recordid><startdate>20230621</startdate><enddate>20230621</enddate><creator>Kaplan, Müslüm</creator><creator>Ortega, Jeanette</creator><creator>Krooß, Felix</creator><creator>Gries, Thomas</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8410-4688</orcidid><orcidid>https://orcid.org/0000-0003-2326-8096</orcidid></search><sort><creationdate>20230621</creationdate><title>Bicomponent melt spinning of polyamide 6/carbon nanotube/carbon black filaments: Investigation of effect of melt mass-flow rate on electrical conductivity</title><author>Kaplan, Müslüm ; Ortega, Jeanette ; Krooß, Felix ; Gries, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-cdaab086646d39407c6da7a4e7e076d853aba2dcf85096006f8a973a13fa61933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaplan, Müslüm</creatorcontrib><creatorcontrib>Ortega, Jeanette</creatorcontrib><creatorcontrib>Krooß, Felix</creatorcontrib><creatorcontrib>Gries, Thomas</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><jtitle>Journal of industrial textiles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaplan, Müslüm</au><au>Ortega, Jeanette</au><au>Krooß, Felix</au><au>Gries, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bicomponent melt spinning of polyamide 6/carbon nanotube/carbon black filaments: Investigation of effect of melt mass-flow rate on electrical conductivity</atitle><jtitle>Journal of industrial textiles</jtitle><date>2023-06-21</date><risdate>2023</risdate><volume>53</volume><issn>1528-0837</issn><eissn>1530-8057</eissn><abstract>Combining the several mixed phase structures and property profiles with a conductive, high aspect ratios nanofiller such as carbon nanotubes, graphene, and carbon black, specific morphological structures in melt spinning can be reached that offer much more potential for developing new functional fibers. Thus, understanding and controlling filler localization inside the developing phase morphology during melt spinning are the keys to the necessary structures. This work aimed to offer the possibility of producing fibers from electrically conductive polymer composites with a high filler concentration. First, the influence of different commercially available nanofillers, such as multi-wall carbon nanotubes (MWCNTs), graphene and carbon black on Polyamide 6 (PA6)-based nanocomposite melt-spun fibers were examined. Following the lab-scale melt spinning experiments, PA6/MWCNT-CB nanocomposite filaments containing 10 wt% nanofiller (each 5 wt%), were chosen for a pilot-scale bicomponent melt spinning process to investigate the influence of the nanocomposite core material feeding parameters on the properties of melt-spun fibers. The electrical conductivity decreased by half (from 3.13E-02 to 6.72E-03) when melt flow rate was increased from 3 g/min to 6 g/min. Scanning electron microscopy micrographs and thermal gravimetric analysis thermograms showed that the change in MFR values significantly affected the nanocomposite filaments’ surface properties.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/15280837231186174</doi><orcidid>https://orcid.org/0000-0002-8410-4688</orcidid><orcidid>https://orcid.org/0000-0003-2326-8096</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1528-0837 |
ispartof | Journal of industrial textiles, 2023-06, Vol.53 |
issn | 1528-0837 1530-8057 |
language | eng |
recordid | cdi_crossref_primary_10_1177_15280837231186174 |
source | Sage Journals GOLD Open Access 2024; Alma/SFX Local Collection |
title | Bicomponent melt spinning of polyamide 6/carbon nanotube/carbon black filaments: Investigation of effect of melt mass-flow rate on electrical conductivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bicomponent%20melt%20spinning%20of%20polyamide%206/carbon%20nanotube/carbon%20black%20filaments:%20Investigation%20of%20effect%20of%20melt%20mass-flow%20rate%20on%20electrical%20conductivity&rft.jtitle=Journal%20of%20industrial%20textiles&rft.au=Kaplan,%20M%C3%BCsl%C3%BCm&rft.date=2023-06-21&rft.volume=53&rft.issn=1528-0837&rft.eissn=1530-8057&rft_id=info:doi/10.1177/15280837231186174&rft_dat=%3Csage_cross%3E10.1177_15280837231186174%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_15280837231186174&rfr_iscdi=true |