An AI-augmented multimodal application for sketching out conceptual design

The goal of this paper is to develop an interactive web-based machine learning application to assist architects with multimodal inputs (sketches and textual information) for conceptual design. With different textual inputs, the application generates the architectural stylistic variations of a user’s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of architectural computing 2023-12, Vol.21 (4), p.565-580
Hauptverfasser: Zhou, Yifan, Park, Hyoung-June
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 580
container_issue 4
container_start_page 565
container_title International journal of architectural computing
container_volume 21
creator Zhou, Yifan
Park, Hyoung-June
description The goal of this paper is to develop an interactive web-based machine learning application to assist architects with multimodal inputs (sketches and textual information) for conceptual design. With different textual inputs, the application generates the architectural stylistic variations of a user’s initial sketch input as a design inspiration. A novel machine learning model for the multimodal input application is introduced and compared to others. The machine learning model is performed through procedural training with the content curation of training data (1) to control the fidelity of generated designs from the input and (2) to manage their diversity. The web-based interface is at its work in progress as a frontend of the proposed application for better user experience and future data collection. In this paper, the framework of the proposed interactive application is explained. Furthermore, the implementation of its prototype is demonstrated with various examples.
doi_str_mv 10.1177/14780771221147605
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_14780771221147605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_14780771221147605</sage_id><sourcerecordid>10.1177_14780771221147605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-3c8ce2e47332a032c7575ddf43f96f1645978267ee75cd835a12717558f8d0653</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANz8AileO846x6rip6gSFzhHln9CSmJHsXPg7UlVbkicdqSdbzQaQu6BbQAQH6BExRCBc1hkxeQFWXFWqkLUSl2S1elfnAzX5CalI2NCAqgVed0Gut0Xem4HF7KzdJj73A3R6p7qcew7o3MXA_VxounLZfPZhZbGOVMTg3Fjnhejdalrwy258rpP7u73rsnH0-P77qU4vD3vd9tDYbgqcyGMMo67EoXgmgluUKK01pfC15WHqpQ1Kl6hcyiNVUJq4AgopfLKskqKNYFzrpliSpPzzTh1g56-G2DNaYzmzxgLszkzSbeuOcZ5CkvFf4Afw0NeTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An AI-augmented multimodal application for sketching out conceptual design</title><source>SAGE Complete</source><creator>Zhou, Yifan ; Park, Hyoung-June</creator><creatorcontrib>Zhou, Yifan ; Park, Hyoung-June</creatorcontrib><description>The goal of this paper is to develop an interactive web-based machine learning application to assist architects with multimodal inputs (sketches and textual information) for conceptual design. With different textual inputs, the application generates the architectural stylistic variations of a user’s initial sketch input as a design inspiration. A novel machine learning model for the multimodal input application is introduced and compared to others. The machine learning model is performed through procedural training with the content curation of training data (1) to control the fidelity of generated designs from the input and (2) to manage their diversity. The web-based interface is at its work in progress as a frontend of the proposed application for better user experience and future data collection. In this paper, the framework of the proposed interactive application is explained. Furthermore, the implementation of its prototype is demonstrated with various examples.</description><identifier>ISSN: 1478-0771</identifier><identifier>EISSN: 2048-3988</identifier><identifier>DOI: 10.1177/14780771221147605</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>International journal of architectural computing, 2023-12, Vol.21 (4), p.565-580</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-3c8ce2e47332a032c7575ddf43f96f1645978267ee75cd835a12717558f8d0653</citedby><cites>FETCH-LOGICAL-c284t-3c8ce2e47332a032c7575ddf43f96f1645978267ee75cd835a12717558f8d0653</cites><orcidid>0000-0002-0774-6871 ; 0000-0001-7871-1310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/14780771221147605$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/14780771221147605$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Zhou, Yifan</creatorcontrib><creatorcontrib>Park, Hyoung-June</creatorcontrib><title>An AI-augmented multimodal application for sketching out conceptual design</title><title>International journal of architectural computing</title><description>The goal of this paper is to develop an interactive web-based machine learning application to assist architects with multimodal inputs (sketches and textual information) for conceptual design. With different textual inputs, the application generates the architectural stylistic variations of a user’s initial sketch input as a design inspiration. A novel machine learning model for the multimodal input application is introduced and compared to others. The machine learning model is performed through procedural training with the content curation of training data (1) to control the fidelity of generated designs from the input and (2) to manage their diversity. The web-based interface is at its work in progress as a frontend of the proposed application for better user experience and future data collection. In this paper, the framework of the proposed interactive application is explained. Furthermore, the implementation of its prototype is demonstrated with various examples.</description><issn>1478-0771</issn><issn>2048-3988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANz8AileO846x6rip6gSFzhHln9CSmJHsXPg7UlVbkicdqSdbzQaQu6BbQAQH6BExRCBc1hkxeQFWXFWqkLUSl2S1elfnAzX5CalI2NCAqgVed0Gut0Xem4HF7KzdJj73A3R6p7qcew7o3MXA_VxounLZfPZhZbGOVMTg3Fjnhejdalrwy258rpP7u73rsnH0-P77qU4vD3vd9tDYbgqcyGMMo67EoXgmgluUKK01pfC15WHqpQ1Kl6hcyiNVUJq4AgopfLKskqKNYFzrpliSpPzzTh1g56-G2DNaYzmzxgLszkzSbeuOcZ5CkvFf4Afw0NeTg</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Zhou, Yifan</creator><creator>Park, Hyoung-June</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0774-6871</orcidid><orcidid>https://orcid.org/0000-0001-7871-1310</orcidid></search><sort><creationdate>202312</creationdate><title>An AI-augmented multimodal application for sketching out conceptual design</title><author>Zhou, Yifan ; Park, Hyoung-June</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-3c8ce2e47332a032c7575ddf43f96f1645978267ee75cd835a12717558f8d0653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yifan</creatorcontrib><creatorcontrib>Park, Hyoung-June</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of architectural computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yifan</au><au>Park, Hyoung-June</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An AI-augmented multimodal application for sketching out conceptual design</atitle><jtitle>International journal of architectural computing</jtitle><date>2023-12</date><risdate>2023</risdate><volume>21</volume><issue>4</issue><spage>565</spage><epage>580</epage><pages>565-580</pages><issn>1478-0771</issn><eissn>2048-3988</eissn><abstract>The goal of this paper is to develop an interactive web-based machine learning application to assist architects with multimodal inputs (sketches and textual information) for conceptual design. With different textual inputs, the application generates the architectural stylistic variations of a user’s initial sketch input as a design inspiration. A novel machine learning model for the multimodal input application is introduced and compared to others. The machine learning model is performed through procedural training with the content curation of training data (1) to control the fidelity of generated designs from the input and (2) to manage their diversity. The web-based interface is at its work in progress as a frontend of the proposed application for better user experience and future data collection. In this paper, the framework of the proposed interactive application is explained. Furthermore, the implementation of its prototype is demonstrated with various examples.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/14780771221147605</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0774-6871</orcidid><orcidid>https://orcid.org/0000-0001-7871-1310</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1478-0771
ispartof International journal of architectural computing, 2023-12, Vol.21 (4), p.565-580
issn 1478-0771
2048-3988
language eng
recordid cdi_crossref_primary_10_1177_14780771221147605
source SAGE Complete
title An AI-augmented multimodal application for sketching out conceptual design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20AI-augmented%20multimodal%20application%20for%20sketching%20out%20conceptual%20design&rft.jtitle=International%20journal%20of%20architectural%20computing&rft.au=Zhou,%20Yifan&rft.date=2023-12&rft.volume=21&rft.issue=4&rft.spage=565&rft.epage=580&rft.pages=565-580&rft.issn=1478-0771&rft.eissn=2048-3988&rft_id=info:doi/10.1177/14780771221147605&rft_dat=%3Csage_cross%3E10.1177_14780771221147605%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_14780771221147605&rfr_iscdi=true