Integrating expertise and parametric analysis for a data-driven decision-making practice
This study explores the integration of expert design intuition and parametric data analysis. While traditional professional design expertise helps to rapidly frame relevant aspects of the design problem and produce viable solutions, it has limitations in addressing multi-criteria design problems wit...
Gespeichert in:
Veröffentlicht in: | International journal of architectural computing 2020-12, Vol.18 (4), p.424-440 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 440 |
---|---|
container_issue | 4 |
container_start_page | 424 |
container_title | International journal of architectural computing |
container_volume | 18 |
creator | Bernal, Marcelo Okhoya, Victor Marshall, Tyrone Chen, Cheney Haymaker, John |
description | This study explores the integration of expert design intuition and parametric data analysis. While traditional professional design expertise helps to rapidly frame relevant aspects of the design problem and produce viable solutions, it has limitations in addressing multi-criteria design problems with conflicting objectives. On the other hand, parametric analysis, in combination with data analysis methods, helps to construct and analyze large design spaces of potential design solutions and tradeoffs, within a given frame. We explore a process whereby expert design teams propose a design using their current intuitive and analytical methods. That design is then further optimized using parametric analysis. This study specifically explores the specification of geometric and material properties of building envelopes for two typically conflicting objectives: daylight quality and energy consumption. We compare performance of the design after initial professional design exploration, and after parametric analysis, showing consistently significant performance improvement after the second process. The study explores synergies between intuitive and systematic design approaches, demonstrating how alignment can help expert teams efficiently and significantly improve project performance. |
doi_str_mv | 10.1177/1478077120940975 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1478077120940975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1478077120940975</sage_id><sourcerecordid>10.1177_1478077120940975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-fa11b0bddc2cbfd49f9995411ab8ffaef7b5db56f00acb5d33d031980632bb813</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgre5d5geiuZOZJllK8VEouFFwN9y8Smo7MyRR7N87Q7sSXN1zOQ84h5Bb4HcAUt5DLRWXEiqua65lc0ZmFa8VE1qpczKbaDbxl-Qq5y3nogFQM_Kx6orfJCyx21D_M_hUYvYUO0cHTLj3JUU7vrg75Jhp6BNF6rAgcyl--446b2OOfcf2-DllDAltidZfk4uAu-xvTndO3p8e35YvbP36vFo-rJmtFBQWEMBw45ytrAmu1kFr3dQAaFQI6IM0jTPNInCOdoRCOC5AK74QlTEKxJzwY65Nfc7Jh3ZIcY_p0AJvp2Xav8uMFna0ZNz4dtt_pbFe_l__C80ZZVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrating expertise and parametric analysis for a data-driven decision-making practice</title><source>Sage Journals</source><creator>Bernal, Marcelo ; Okhoya, Victor ; Marshall, Tyrone ; Chen, Cheney ; Haymaker, John</creator><creatorcontrib>Bernal, Marcelo ; Okhoya, Victor ; Marshall, Tyrone ; Chen, Cheney ; Haymaker, John</creatorcontrib><description>This study explores the integration of expert design intuition and parametric data analysis. While traditional professional design expertise helps to rapidly frame relevant aspects of the design problem and produce viable solutions, it has limitations in addressing multi-criteria design problems with conflicting objectives. On the other hand, parametric analysis, in combination with data analysis methods, helps to construct and analyze large design spaces of potential design solutions and tradeoffs, within a given frame. We explore a process whereby expert design teams propose a design using their current intuitive and analytical methods. That design is then further optimized using parametric analysis. This study specifically explores the specification of geometric and material properties of building envelopes for two typically conflicting objectives: daylight quality and energy consumption. We compare performance of the design after initial professional design exploration, and after parametric analysis, showing consistently significant performance improvement after the second process. The study explores synergies between intuitive and systematic design approaches, demonstrating how alignment can help expert teams efficiently and significantly improve project performance.</description><identifier>ISSN: 1478-0771</identifier><identifier>EISSN: 2048-3988</identifier><identifier>DOI: 10.1177/1478077120940975</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>International journal of architectural computing, 2020-12, Vol.18 (4), p.424-440</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-fa11b0bddc2cbfd49f9995411ab8ffaef7b5db56f00acb5d33d031980632bb813</citedby><cites>FETCH-LOGICAL-c281t-fa11b0bddc2cbfd49f9995411ab8ffaef7b5db56f00acb5d33d031980632bb813</cites><orcidid>0000-0002-6309-7394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1478077120940975$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1478077120940975$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Bernal, Marcelo</creatorcontrib><creatorcontrib>Okhoya, Victor</creatorcontrib><creatorcontrib>Marshall, Tyrone</creatorcontrib><creatorcontrib>Chen, Cheney</creatorcontrib><creatorcontrib>Haymaker, John</creatorcontrib><title>Integrating expertise and parametric analysis for a data-driven decision-making practice</title><title>International journal of architectural computing</title><description>This study explores the integration of expert design intuition and parametric data analysis. While traditional professional design expertise helps to rapidly frame relevant aspects of the design problem and produce viable solutions, it has limitations in addressing multi-criteria design problems with conflicting objectives. On the other hand, parametric analysis, in combination with data analysis methods, helps to construct and analyze large design spaces of potential design solutions and tradeoffs, within a given frame. We explore a process whereby expert design teams propose a design using their current intuitive and analytical methods. That design is then further optimized using parametric analysis. This study specifically explores the specification of geometric and material properties of building envelopes for two typically conflicting objectives: daylight quality and energy consumption. We compare performance of the design after initial professional design exploration, and after parametric analysis, showing consistently significant performance improvement after the second process. The study explores synergies between intuitive and systematic design approaches, demonstrating how alignment can help expert teams efficiently and significantly improve project performance.</description><issn>1478-0771</issn><issn>2048-3988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgre5d5geiuZOZJllK8VEouFFwN9y8Smo7MyRR7N87Q7sSXN1zOQ84h5Bb4HcAUt5DLRWXEiqua65lc0ZmFa8VE1qpczKbaDbxl-Qq5y3nogFQM_Kx6orfJCyx21D_M_hUYvYUO0cHTLj3JUU7vrg75Jhp6BNF6rAgcyl--446b2OOfcf2-DllDAltidZfk4uAu-xvTndO3p8e35YvbP36vFo-rJmtFBQWEMBw45ytrAmu1kFr3dQAaFQI6IM0jTPNInCOdoRCOC5AK74QlTEKxJzwY65Nfc7Jh3ZIcY_p0AJvp2Xav8uMFna0ZNz4dtt_pbFe_l__C80ZZVw</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Bernal, Marcelo</creator><creator>Okhoya, Victor</creator><creator>Marshall, Tyrone</creator><creator>Chen, Cheney</creator><creator>Haymaker, John</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6309-7394</orcidid></search><sort><creationdate>202012</creationdate><title>Integrating expertise and parametric analysis for a data-driven decision-making practice</title><author>Bernal, Marcelo ; Okhoya, Victor ; Marshall, Tyrone ; Chen, Cheney ; Haymaker, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-fa11b0bddc2cbfd49f9995411ab8ffaef7b5db56f00acb5d33d031980632bb813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernal, Marcelo</creatorcontrib><creatorcontrib>Okhoya, Victor</creatorcontrib><creatorcontrib>Marshall, Tyrone</creatorcontrib><creatorcontrib>Chen, Cheney</creatorcontrib><creatorcontrib>Haymaker, John</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of architectural computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernal, Marcelo</au><au>Okhoya, Victor</au><au>Marshall, Tyrone</au><au>Chen, Cheney</au><au>Haymaker, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating expertise and parametric analysis for a data-driven decision-making practice</atitle><jtitle>International journal of architectural computing</jtitle><date>2020-12</date><risdate>2020</risdate><volume>18</volume><issue>4</issue><spage>424</spage><epage>440</epage><pages>424-440</pages><issn>1478-0771</issn><eissn>2048-3988</eissn><abstract>This study explores the integration of expert design intuition and parametric data analysis. While traditional professional design expertise helps to rapidly frame relevant aspects of the design problem and produce viable solutions, it has limitations in addressing multi-criteria design problems with conflicting objectives. On the other hand, parametric analysis, in combination with data analysis methods, helps to construct and analyze large design spaces of potential design solutions and tradeoffs, within a given frame. We explore a process whereby expert design teams propose a design using their current intuitive and analytical methods. That design is then further optimized using parametric analysis. This study specifically explores the specification of geometric and material properties of building envelopes for two typically conflicting objectives: daylight quality and energy consumption. We compare performance of the design after initial professional design exploration, and after parametric analysis, showing consistently significant performance improvement after the second process. The study explores synergies between intuitive and systematic design approaches, demonstrating how alignment can help expert teams efficiently and significantly improve project performance.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1478077120940975</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6309-7394</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1478-0771 |
ispartof | International journal of architectural computing, 2020-12, Vol.18 (4), p.424-440 |
issn | 1478-0771 2048-3988 |
language | eng |
recordid | cdi_crossref_primary_10_1177_1478077120940975 |
source | Sage Journals |
title | Integrating expertise and parametric analysis for a data-driven decision-making practice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20expertise%20and%20parametric%20analysis%20for%20a%20data-driven%20decision-making%20practice&rft.jtitle=International%20journal%20of%20architectural%20computing&rft.au=Bernal,%20Marcelo&rft.date=2020-12&rft.volume=18&rft.issue=4&rft.spage=424&rft.epage=440&rft.pages=424-440&rft.issn=1478-0771&rft.eissn=2048-3988&rft_id=info:doi/10.1177/1478077120940975&rft_dat=%3Csage_cross%3E10.1177_1478077120940975%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1478077120940975&rfr_iscdi=true |