Multi-source domain adversarial graph convolutional networks for rolling mill health states diagnosis under variable working conditions
As the rolling mill often encounters variable and complicated working conditions and shock loads, unsupervised domain adaptive (UDA) methods are imperative in its health monitoring. However, efforts of applying UDA methods on the rolling mill are negligible, and many existing approaches have constra...
Gespeichert in:
Veröffentlicht in: | Structural health monitoring 2024-11, Vol.23 (6), p.3505-3524 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!