Quantifying the extent of local damage of a 60-year-old prestressed concrete bridge: A hybrid SHM approach
The increasing demand for civil infrastructures, the aging of existing assets, and the strengthening of safety and liability laws have led to the inclusion of structural health monitoring (SHM) techniques into the structural management process. With the latest developments in the sensors field and c...
Gespeichert in:
Veröffentlicht in: | Structural health monitoring 2023-01, Vol.22 (1), p.496-517 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 517 |
---|---|
container_issue | 1 |
container_start_page | 496 |
container_title | Structural health monitoring |
container_volume | 22 |
creator | Sakiyama, Felipe IH Veríssimo, Gustavo S Lehmann, Frank Garrecht, Harald |
description | The increasing demand for civil infrastructures, the aging of existing assets, and the strengthening of safety and liability laws have led to the inclusion of structural health monitoring (SHM) techniques into the structural management process. With the latest developments in the sensors field and computational power, real-scale SHM systems’ deployment has become logistically and economically feasible. However, it is still challenging to perform a quantitative evaluation of the structural condition based on measured data. The paper addresses recent efforts to associate measured observations with an identification of local stiffness reduction as a global parameter for damage onset and growth. It proposes a hybrid methodology for model updating and damage identification. The proposed methodology is built on data feature extraction using the principal component analysis (PCA), finite element (FE) simulation, and Monte Carlo simulation to quantify the extent of local damage of a 60-year-old prestressed concrete bridge. The methodology allows a sensor-specific quantification of the local stiffness reduction and makes it possible to focus succeeding bridge inspection, recalculation, and repair works on these areas. Even more, the monitoring in combination with the FE model and proposed methodology provides continuous information on developing stiffness reduction and the acuteness of rehabilitation measures. |
doi_str_mv | 10.1177/14759217221079295 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_14759217221079295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_14759217221079295</sage_id><sourcerecordid>10.1177_14759217221079295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-998e18767e62ef55f4ec2d0e6d92aa9c3e1811036e8bd4258ebb8874119351683</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4Ab_kDWzPZjyTeSlErVETU85JNZtst290lScH992Zpb4KHYd7w5g3zHiH3wBYAQjxAJnLFQXAOTCiu8gsyA5FBkkIhLyOOfDItXJMb7_eMRSiKGdl_HHUXmnpsui0NO6T4E7ALtK9p2xvdUqsPeovTrGnBkhG1S_rW0sGhD7E8Wmr6zjgMSCvX2C0-0iXdjROmn-s3qofB9drsbslVrVuPd-c-J9_PT1-rdbJ5f3ldLTeJSbkIiVISQYpCYMGxzvM6Q8Mtw8IqrrUyaWQBWFqgrGzGc4lVJWW0CirNo9l0TuB017jee4d1ObjmoN1YAiunsMo_YUXN4qTx0Wy574-uiy_-I_gFyndpBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantifying the extent of local damage of a 60-year-old prestressed concrete bridge: A hybrid SHM approach</title><source>Access via SAGE</source><creator>Sakiyama, Felipe IH ; Veríssimo, Gustavo S ; Lehmann, Frank ; Garrecht, Harald</creator><creatorcontrib>Sakiyama, Felipe IH ; Veríssimo, Gustavo S ; Lehmann, Frank ; Garrecht, Harald</creatorcontrib><description>The increasing demand for civil infrastructures, the aging of existing assets, and the strengthening of safety and liability laws have led to the inclusion of structural health monitoring (SHM) techniques into the structural management process. With the latest developments in the sensors field and computational power, real-scale SHM systems’ deployment has become logistically and economically feasible. However, it is still challenging to perform a quantitative evaluation of the structural condition based on measured data. The paper addresses recent efforts to associate measured observations with an identification of local stiffness reduction as a global parameter for damage onset and growth. It proposes a hybrid methodology for model updating and damage identification. The proposed methodology is built on data feature extraction using the principal component analysis (PCA), finite element (FE) simulation, and Monte Carlo simulation to quantify the extent of local damage of a 60-year-old prestressed concrete bridge. The methodology allows a sensor-specific quantification of the local stiffness reduction and makes it possible to focus succeeding bridge inspection, recalculation, and repair works on these areas. Even more, the monitoring in combination with the FE model and proposed methodology provides continuous information on developing stiffness reduction and the acuteness of rehabilitation measures.</description><identifier>ISSN: 1475-9217</identifier><identifier>EISSN: 1741-3168</identifier><identifier>DOI: 10.1177/14759217221079295</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Structural health monitoring, 2023-01, Vol.22 (1), p.496-517</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-998e18767e62ef55f4ec2d0e6d92aa9c3e1811036e8bd4258ebb8874119351683</citedby><cites>FETCH-LOGICAL-c327t-998e18767e62ef55f4ec2d0e6d92aa9c3e1811036e8bd4258ebb8874119351683</cites><orcidid>0000-0003-1914-6686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/14759217221079295$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/14759217221079295$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Sakiyama, Felipe IH</creatorcontrib><creatorcontrib>Veríssimo, Gustavo S</creatorcontrib><creatorcontrib>Lehmann, Frank</creatorcontrib><creatorcontrib>Garrecht, Harald</creatorcontrib><title>Quantifying the extent of local damage of a 60-year-old prestressed concrete bridge: A hybrid SHM approach</title><title>Structural health monitoring</title><description>The increasing demand for civil infrastructures, the aging of existing assets, and the strengthening of safety and liability laws have led to the inclusion of structural health monitoring (SHM) techniques into the structural management process. With the latest developments in the sensors field and computational power, real-scale SHM systems’ deployment has become logistically and economically feasible. However, it is still challenging to perform a quantitative evaluation of the structural condition based on measured data. The paper addresses recent efforts to associate measured observations with an identification of local stiffness reduction as a global parameter for damage onset and growth. It proposes a hybrid methodology for model updating and damage identification. The proposed methodology is built on data feature extraction using the principal component analysis (PCA), finite element (FE) simulation, and Monte Carlo simulation to quantify the extent of local damage of a 60-year-old prestressed concrete bridge. The methodology allows a sensor-specific quantification of the local stiffness reduction and makes it possible to focus succeeding bridge inspection, recalculation, and repair works on these areas. Even more, the monitoring in combination with the FE model and proposed methodology provides continuous information on developing stiffness reduction and the acuteness of rehabilitation measures.</description><issn>1475-9217</issn><issn>1741-3168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp9UE1LAzEQDaJgrf4Ab_kDWzPZjyTeSlErVETU85JNZtst290lScH992Zpb4KHYd7w5g3zHiH3wBYAQjxAJnLFQXAOTCiu8gsyA5FBkkIhLyOOfDItXJMb7_eMRSiKGdl_HHUXmnpsui0NO6T4E7ALtK9p2xvdUqsPeovTrGnBkhG1S_rW0sGhD7E8Wmr6zjgMSCvX2C0-0iXdjROmn-s3qofB9drsbslVrVuPd-c-J9_PT1-rdbJ5f3ldLTeJSbkIiVISQYpCYMGxzvM6Q8Mtw8IqrrUyaWQBWFqgrGzGc4lVJWW0CirNo9l0TuB017jee4d1ObjmoN1YAiunsMo_YUXN4qTx0Wy574-uiy_-I_gFyndpBQ</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Sakiyama, Felipe IH</creator><creator>Veríssimo, Gustavo S</creator><creator>Lehmann, Frank</creator><creator>Garrecht, Harald</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1914-6686</orcidid></search><sort><creationdate>202301</creationdate><title>Quantifying the extent of local damage of a 60-year-old prestressed concrete bridge: A hybrid SHM approach</title><author>Sakiyama, Felipe IH ; Veríssimo, Gustavo S ; Lehmann, Frank ; Garrecht, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-998e18767e62ef55f4ec2d0e6d92aa9c3e1811036e8bd4258ebb8874119351683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakiyama, Felipe IH</creatorcontrib><creatorcontrib>Veríssimo, Gustavo S</creatorcontrib><creatorcontrib>Lehmann, Frank</creatorcontrib><creatorcontrib>Garrecht, Harald</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><jtitle>Structural health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakiyama, Felipe IH</au><au>Veríssimo, Gustavo S</au><au>Lehmann, Frank</au><au>Garrecht, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the extent of local damage of a 60-year-old prestressed concrete bridge: A hybrid SHM approach</atitle><jtitle>Structural health monitoring</jtitle><date>2023-01</date><risdate>2023</risdate><volume>22</volume><issue>1</issue><spage>496</spage><epage>517</epage><pages>496-517</pages><issn>1475-9217</issn><eissn>1741-3168</eissn><abstract>The increasing demand for civil infrastructures, the aging of existing assets, and the strengthening of safety and liability laws have led to the inclusion of structural health monitoring (SHM) techniques into the structural management process. With the latest developments in the sensors field and computational power, real-scale SHM systems’ deployment has become logistically and economically feasible. However, it is still challenging to perform a quantitative evaluation of the structural condition based on measured data. The paper addresses recent efforts to associate measured observations with an identification of local stiffness reduction as a global parameter for damage onset and growth. It proposes a hybrid methodology for model updating and damage identification. The proposed methodology is built on data feature extraction using the principal component analysis (PCA), finite element (FE) simulation, and Monte Carlo simulation to quantify the extent of local damage of a 60-year-old prestressed concrete bridge. The methodology allows a sensor-specific quantification of the local stiffness reduction and makes it possible to focus succeeding bridge inspection, recalculation, and repair works on these areas. Even more, the monitoring in combination with the FE model and proposed methodology provides continuous information on developing stiffness reduction and the acuteness of rehabilitation measures.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/14759217221079295</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-1914-6686</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1475-9217 |
ispartof | Structural health monitoring, 2023-01, Vol.22 (1), p.496-517 |
issn | 1475-9217 1741-3168 |
language | eng |
recordid | cdi_crossref_primary_10_1177_14759217221079295 |
source | Access via SAGE |
title | Quantifying the extent of local damage of a 60-year-old prestressed concrete bridge: A hybrid SHM approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20extent%20of%20local%20damage%20of%20a%2060-year-old%20prestressed%20concrete%20bridge:%20A%20hybrid%20SHM%20approach&rft.jtitle=Structural%20health%20monitoring&rft.au=Sakiyama,%20Felipe%20IH&rft.date=2023-01&rft.volume=22&rft.issue=1&rft.spage=496&rft.epage=517&rft.pages=496-517&rft.issn=1475-9217&rft.eissn=1741-3168&rft_id=info:doi/10.1177/14759217221079295&rft_dat=%3Csage_cross%3E10.1177_14759217221079295%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_14759217221079295&rfr_iscdi=true |