Quantifying the extent of local damage of a 60-year-old prestressed concrete bridge: A hybrid SHM approach

The increasing demand for civil infrastructures, the aging of existing assets, and the strengthening of safety and liability laws have led to the inclusion of structural health monitoring (SHM) techniques into the structural management process. With the latest developments in the sensors field and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural health monitoring 2023-01, Vol.22 (1), p.496-517
Hauptverfasser: Sakiyama, Felipe IH, Veríssimo, Gustavo S, Lehmann, Frank, Garrecht, Harald
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 517
container_issue 1
container_start_page 496
container_title Structural health monitoring
container_volume 22
creator Sakiyama, Felipe IH
Veríssimo, Gustavo S
Lehmann, Frank
Garrecht, Harald
description The increasing demand for civil infrastructures, the aging of existing assets, and the strengthening of safety and liability laws have led to the inclusion of structural health monitoring (SHM) techniques into the structural management process. With the latest developments in the sensors field and computational power, real-scale SHM systems’ deployment has become logistically and economically feasible. However, it is still challenging to perform a quantitative evaluation of the structural condition based on measured data. The paper addresses recent efforts to associate measured observations with an identification of local stiffness reduction as a global parameter for damage onset and growth. It proposes a hybrid methodology for model updating and damage identification. The proposed methodology is built on data feature extraction using the principal component analysis (PCA), finite element (FE) simulation, and Monte Carlo simulation to quantify the extent of local damage of a 60-year-old prestressed concrete bridge. The methodology allows a sensor-specific quantification of the local stiffness reduction and makes it possible to focus succeeding bridge inspection, recalculation, and repair works on these areas. Even more, the monitoring in combination with the FE model and proposed methodology provides continuous information on developing stiffness reduction and the acuteness of rehabilitation measures.
doi_str_mv 10.1177/14759217221079295
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_14759217221079295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_14759217221079295</sage_id><sourcerecordid>10.1177_14759217221079295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-998e18767e62ef55f4ec2d0e6d92aa9c3e1811036e8bd4258ebb8874119351683</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4Ab_kDWzPZjyTeSlErVETU85JNZtst290lScH992Zpb4KHYd7w5g3zHiH3wBYAQjxAJnLFQXAOTCiu8gsyA5FBkkIhLyOOfDItXJMb7_eMRSiKGdl_HHUXmnpsui0NO6T4E7ALtK9p2xvdUqsPeovTrGnBkhG1S_rW0sGhD7E8Wmr6zjgMSCvX2C0-0iXdjROmn-s3qofB9drsbslVrVuPd-c-J9_PT1-rdbJ5f3ldLTeJSbkIiVISQYpCYMGxzvM6Q8Mtw8IqrrUyaWQBWFqgrGzGc4lVJWW0CirNo9l0TuB017jee4d1ObjmoN1YAiunsMo_YUXN4qTx0Wy574-uiy_-I_gFyndpBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantifying the extent of local damage of a 60-year-old prestressed concrete bridge: A hybrid SHM approach</title><source>Access via SAGE</source><creator>Sakiyama, Felipe IH ; Veríssimo, Gustavo S ; Lehmann, Frank ; Garrecht, Harald</creator><creatorcontrib>Sakiyama, Felipe IH ; Veríssimo, Gustavo S ; Lehmann, Frank ; Garrecht, Harald</creatorcontrib><description>The increasing demand for civil infrastructures, the aging of existing assets, and the strengthening of safety and liability laws have led to the inclusion of structural health monitoring (SHM) techniques into the structural management process. With the latest developments in the sensors field and computational power, real-scale SHM systems’ deployment has become logistically and economically feasible. However, it is still challenging to perform a quantitative evaluation of the structural condition based on measured data. The paper addresses recent efforts to associate measured observations with an identification of local stiffness reduction as a global parameter for damage onset and growth. It proposes a hybrid methodology for model updating and damage identification. The proposed methodology is built on data feature extraction using the principal component analysis (PCA), finite element (FE) simulation, and Monte Carlo simulation to quantify the extent of local damage of a 60-year-old prestressed concrete bridge. The methodology allows a sensor-specific quantification of the local stiffness reduction and makes it possible to focus succeeding bridge inspection, recalculation, and repair works on these areas. Even more, the monitoring in combination with the FE model and proposed methodology provides continuous information on developing stiffness reduction and the acuteness of rehabilitation measures.</description><identifier>ISSN: 1475-9217</identifier><identifier>EISSN: 1741-3168</identifier><identifier>DOI: 10.1177/14759217221079295</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Structural health monitoring, 2023-01, Vol.22 (1), p.496-517</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-998e18767e62ef55f4ec2d0e6d92aa9c3e1811036e8bd4258ebb8874119351683</citedby><cites>FETCH-LOGICAL-c327t-998e18767e62ef55f4ec2d0e6d92aa9c3e1811036e8bd4258ebb8874119351683</cites><orcidid>0000-0003-1914-6686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/14759217221079295$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/14759217221079295$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Sakiyama, Felipe IH</creatorcontrib><creatorcontrib>Veríssimo, Gustavo S</creatorcontrib><creatorcontrib>Lehmann, Frank</creatorcontrib><creatorcontrib>Garrecht, Harald</creatorcontrib><title>Quantifying the extent of local damage of a 60-year-old prestressed concrete bridge: A hybrid SHM approach</title><title>Structural health monitoring</title><description>The increasing demand for civil infrastructures, the aging of existing assets, and the strengthening of safety and liability laws have led to the inclusion of structural health monitoring (SHM) techniques into the structural management process. With the latest developments in the sensors field and computational power, real-scale SHM systems’ deployment has become logistically and economically feasible. However, it is still challenging to perform a quantitative evaluation of the structural condition based on measured data. The paper addresses recent efforts to associate measured observations with an identification of local stiffness reduction as a global parameter for damage onset and growth. It proposes a hybrid methodology for model updating and damage identification. The proposed methodology is built on data feature extraction using the principal component analysis (PCA), finite element (FE) simulation, and Monte Carlo simulation to quantify the extent of local damage of a 60-year-old prestressed concrete bridge. The methodology allows a sensor-specific quantification of the local stiffness reduction and makes it possible to focus succeeding bridge inspection, recalculation, and repair works on these areas. Even more, the monitoring in combination with the FE model and proposed methodology provides continuous information on developing stiffness reduction and the acuteness of rehabilitation measures.</description><issn>1475-9217</issn><issn>1741-3168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp9UE1LAzEQDaJgrf4Ab_kDWzPZjyTeSlErVETU85JNZtst290lScH992Zpb4KHYd7w5g3zHiH3wBYAQjxAJnLFQXAOTCiu8gsyA5FBkkIhLyOOfDItXJMb7_eMRSiKGdl_HHUXmnpsui0NO6T4E7ALtK9p2xvdUqsPeovTrGnBkhG1S_rW0sGhD7E8Wmr6zjgMSCvX2C0-0iXdjROmn-s3qofB9drsbslVrVuPd-c-J9_PT1-rdbJ5f3ldLTeJSbkIiVISQYpCYMGxzvM6Q8Mtw8IqrrUyaWQBWFqgrGzGc4lVJWW0CirNo9l0TuB017jee4d1ObjmoN1YAiunsMo_YUXN4qTx0Wy574-uiy_-I_gFyndpBQ</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Sakiyama, Felipe IH</creator><creator>Veríssimo, Gustavo S</creator><creator>Lehmann, Frank</creator><creator>Garrecht, Harald</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1914-6686</orcidid></search><sort><creationdate>202301</creationdate><title>Quantifying the extent of local damage of a 60-year-old prestressed concrete bridge: A hybrid SHM approach</title><author>Sakiyama, Felipe IH ; Veríssimo, Gustavo S ; Lehmann, Frank ; Garrecht, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-998e18767e62ef55f4ec2d0e6d92aa9c3e1811036e8bd4258ebb8874119351683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakiyama, Felipe IH</creatorcontrib><creatorcontrib>Veríssimo, Gustavo S</creatorcontrib><creatorcontrib>Lehmann, Frank</creatorcontrib><creatorcontrib>Garrecht, Harald</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><jtitle>Structural health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakiyama, Felipe IH</au><au>Veríssimo, Gustavo S</au><au>Lehmann, Frank</au><au>Garrecht, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the extent of local damage of a 60-year-old prestressed concrete bridge: A hybrid SHM approach</atitle><jtitle>Structural health monitoring</jtitle><date>2023-01</date><risdate>2023</risdate><volume>22</volume><issue>1</issue><spage>496</spage><epage>517</epage><pages>496-517</pages><issn>1475-9217</issn><eissn>1741-3168</eissn><abstract>The increasing demand for civil infrastructures, the aging of existing assets, and the strengthening of safety and liability laws have led to the inclusion of structural health monitoring (SHM) techniques into the structural management process. With the latest developments in the sensors field and computational power, real-scale SHM systems’ deployment has become logistically and economically feasible. However, it is still challenging to perform a quantitative evaluation of the structural condition based on measured data. The paper addresses recent efforts to associate measured observations with an identification of local stiffness reduction as a global parameter for damage onset and growth. It proposes a hybrid methodology for model updating and damage identification. The proposed methodology is built on data feature extraction using the principal component analysis (PCA), finite element (FE) simulation, and Monte Carlo simulation to quantify the extent of local damage of a 60-year-old prestressed concrete bridge. The methodology allows a sensor-specific quantification of the local stiffness reduction and makes it possible to focus succeeding bridge inspection, recalculation, and repair works on these areas. Even more, the monitoring in combination with the FE model and proposed methodology provides continuous information on developing stiffness reduction and the acuteness of rehabilitation measures.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/14759217221079295</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-1914-6686</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1475-9217
ispartof Structural health monitoring, 2023-01, Vol.22 (1), p.496-517
issn 1475-9217
1741-3168
language eng
recordid cdi_crossref_primary_10_1177_14759217221079295
source Access via SAGE
title Quantifying the extent of local damage of a 60-year-old prestressed concrete bridge: A hybrid SHM approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20extent%20of%20local%20damage%20of%20a%2060-year-old%20prestressed%20concrete%20bridge:%20A%20hybrid%20SHM%20approach&rft.jtitle=Structural%20health%20monitoring&rft.au=Sakiyama,%20Felipe%20IH&rft.date=2023-01&rft.volume=22&rft.issue=1&rft.spage=496&rft.epage=517&rft.pages=496-517&rft.issn=1475-9217&rft.eissn=1741-3168&rft_id=info:doi/10.1177/14759217221079295&rft_dat=%3Csage_cross%3E10.1177_14759217221079295%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_14759217221079295&rfr_iscdi=true