Long-term guided wave structural health monitoring in an uncontrolled environment through long short-term principal component analysis

Environmental effects are a significant challenge in guided wave structural health monitoring systems. These effects distort signals and increase the likelihood of false alarms. Many research papers have studied mitigation strategies for common variations in guided wave datasets reproducible in a la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural health monitoring 2022-07, Vol.21 (4), p.1501-1517
Hauptverfasser: Yang, Kang, Kim, Sungwon, Yue, Rongting, Yue, Haotian, Harley, Joel B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1517
container_issue 4
container_start_page 1501
container_title Structural health monitoring
container_volume 21
creator Yang, Kang
Kim, Sungwon
Yue, Rongting
Yue, Haotian
Harley, Joel B.
description Environmental effects are a significant challenge in guided wave structural health monitoring systems. These effects distort signals and increase the likelihood of false alarms. Many research papers have studied mitigation strategies for common variations in guided wave datasets reproducible in a lab, such as temperature and stress. There are fewer studies and strategies for detecting damage under more unpredictable outdoor conditions. This article proposes a long short-term principal component analysis reconstruction method to detect synthetic damage under highly variational environments, like precipitation, freeze, and other conditions. The method does not require any temperature or other compensation methods and is tested by approximately seven million guided wave measurements collected over 2 years. Results show that our method achieves an area under curve score of near 0.95 when detecting synthetic damage under highly variable environmental conditions.
doi_str_mv 10.1177/14759217211035532
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_14759217211035532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_14759217211035532</sage_id><sourcerecordid>10.1177_14759217211035532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-4fb723829a0b96a443d4efef1b9601809aa48ae1c98bdf21a5916600b5e016ec3</originalsourceid><addsrcrecordid>eNp9kE1qwzAQhUVpoWnaA3SnCzjV2LJlL0voHxi6addmLMu2gi0FSU7JBXruKqS7QlfzhnnfY3iE3APbAAjxAFzkVQoiBWBZnmfpBVmB4JBkUJSXUcd7cjJckxvvd4xFKYoV-a6tGZKg3EyHRXeqo194UNQHt8iwOJzoqHAKI52t0cE6bQaqDUVDFyOtCc5OU4SUOWhnzaxMoGF0dhlGOsVk6kfrwjl_H2Gp9zFS2nlvzcmLBqej1_6WXPU4eXX3O9fk8_npY_ua1O8vb9vHOpFpyUPC-1akWZlWyNqqQM6zjqte9RA3BiWrEHmJCmRVtl2fAuYVFAVjba4YFEpmawLnXOms9071TfxqRndsgDWnIps_RUZmc2Y8DqrZ2cXFp_0_wA_Yi3c4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Long-term guided wave structural health monitoring in an uncontrolled environment through long short-term principal component analysis</title><source>SAGE Complete A-Z List</source><creator>Yang, Kang ; Kim, Sungwon ; Yue, Rongting ; Yue, Haotian ; Harley, Joel B.</creator><creatorcontrib>Yang, Kang ; Kim, Sungwon ; Yue, Rongting ; Yue, Haotian ; Harley, Joel B.</creatorcontrib><description>Environmental effects are a significant challenge in guided wave structural health monitoring systems. These effects distort signals and increase the likelihood of false alarms. Many research papers have studied mitigation strategies for common variations in guided wave datasets reproducible in a lab, such as temperature and stress. There are fewer studies and strategies for detecting damage under more unpredictable outdoor conditions. This article proposes a long short-term principal component analysis reconstruction method to detect synthetic damage under highly variational environments, like precipitation, freeze, and other conditions. The method does not require any temperature or other compensation methods and is tested by approximately seven million guided wave measurements collected over 2 years. Results show that our method achieves an area under curve score of near 0.95 when detecting synthetic damage under highly variable environmental conditions.</description><identifier>ISSN: 1475-9217</identifier><identifier>EISSN: 1741-3168</identifier><identifier>DOI: 10.1177/14759217211035532</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Structural health monitoring, 2022-07, Vol.21 (4), p.1501-1517</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-4fb723829a0b96a443d4efef1b9601809aa48ae1c98bdf21a5916600b5e016ec3</citedby><cites>FETCH-LOGICAL-c284t-4fb723829a0b96a443d4efef1b9601809aa48ae1c98bdf21a5916600b5e016ec3</cites><orcidid>0000-0001-5715-5554 ; 0000-0001-5655-9741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/14759217211035532$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/14759217211035532$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,778,782,21802,27907,27908,43604,43605</link.rule.ids></links><search><creatorcontrib>Yang, Kang</creatorcontrib><creatorcontrib>Kim, Sungwon</creatorcontrib><creatorcontrib>Yue, Rongting</creatorcontrib><creatorcontrib>Yue, Haotian</creatorcontrib><creatorcontrib>Harley, Joel B.</creatorcontrib><title>Long-term guided wave structural health monitoring in an uncontrolled environment through long short-term principal component analysis</title><title>Structural health monitoring</title><description>Environmental effects are a significant challenge in guided wave structural health monitoring systems. These effects distort signals and increase the likelihood of false alarms. Many research papers have studied mitigation strategies for common variations in guided wave datasets reproducible in a lab, such as temperature and stress. There are fewer studies and strategies for detecting damage under more unpredictable outdoor conditions. This article proposes a long short-term principal component analysis reconstruction method to detect synthetic damage under highly variational environments, like precipitation, freeze, and other conditions. The method does not require any temperature or other compensation methods and is tested by approximately seven million guided wave measurements collected over 2 years. Results show that our method achieves an area under curve score of near 0.95 when detecting synthetic damage under highly variable environmental conditions.</description><issn>1475-9217</issn><issn>1741-3168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1qwzAQhUVpoWnaA3SnCzjV2LJlL0voHxi6addmLMu2gi0FSU7JBXruKqS7QlfzhnnfY3iE3APbAAjxAFzkVQoiBWBZnmfpBVmB4JBkUJSXUcd7cjJckxvvd4xFKYoV-a6tGZKg3EyHRXeqo194UNQHt8iwOJzoqHAKI52t0cE6bQaqDUVDFyOtCc5OU4SUOWhnzaxMoGF0dhlGOsVk6kfrwjl_H2Gp9zFS2nlvzcmLBqej1_6WXPU4eXX3O9fk8_npY_ua1O8vb9vHOpFpyUPC-1akWZlWyNqqQM6zjqte9RA3BiWrEHmJCmRVtl2fAuYVFAVjba4YFEpmawLnXOms9071TfxqRndsgDWnIps_RUZmc2Y8DqrZ2cXFp_0_wA_Yi3c4</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Yang, Kang</creator><creator>Kim, Sungwon</creator><creator>Yue, Rongting</creator><creator>Yue, Haotian</creator><creator>Harley, Joel B.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5715-5554</orcidid><orcidid>https://orcid.org/0000-0001-5655-9741</orcidid></search><sort><creationdate>20220701</creationdate><title>Long-term guided wave structural health monitoring in an uncontrolled environment through long short-term principal component analysis</title><author>Yang, Kang ; Kim, Sungwon ; Yue, Rongting ; Yue, Haotian ; Harley, Joel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-4fb723829a0b96a443d4efef1b9601809aa48ae1c98bdf21a5916600b5e016ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Kang</creatorcontrib><creatorcontrib>Kim, Sungwon</creatorcontrib><creatorcontrib>Yue, Rongting</creatorcontrib><creatorcontrib>Yue, Haotian</creatorcontrib><creatorcontrib>Harley, Joel B.</creatorcontrib><collection>CrossRef</collection><jtitle>Structural health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Kang</au><au>Kim, Sungwon</au><au>Yue, Rongting</au><au>Yue, Haotian</au><au>Harley, Joel B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term guided wave structural health monitoring in an uncontrolled environment through long short-term principal component analysis</atitle><jtitle>Structural health monitoring</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>21</volume><issue>4</issue><spage>1501</spage><epage>1517</epage><pages>1501-1517</pages><issn>1475-9217</issn><eissn>1741-3168</eissn><abstract>Environmental effects are a significant challenge in guided wave structural health monitoring systems. These effects distort signals and increase the likelihood of false alarms. Many research papers have studied mitigation strategies for common variations in guided wave datasets reproducible in a lab, such as temperature and stress. There are fewer studies and strategies for detecting damage under more unpredictable outdoor conditions. This article proposes a long short-term principal component analysis reconstruction method to detect synthetic damage under highly variational environments, like precipitation, freeze, and other conditions. The method does not require any temperature or other compensation methods and is tested by approximately seven million guided wave measurements collected over 2 years. Results show that our method achieves an area under curve score of near 0.95 when detecting synthetic damage under highly variable environmental conditions.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/14759217211035532</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5715-5554</orcidid><orcidid>https://orcid.org/0000-0001-5655-9741</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1475-9217
ispartof Structural health monitoring, 2022-07, Vol.21 (4), p.1501-1517
issn 1475-9217
1741-3168
language eng
recordid cdi_crossref_primary_10_1177_14759217211035532
source SAGE Complete A-Z List
title Long-term guided wave structural health monitoring in an uncontrolled environment through long short-term principal component analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term%20guided%20wave%20structural%20health%20monitoring%20in%20an%20uncontrolled%20environment%20through%20long%20short-term%20principal%20component%20analysis&rft.jtitle=Structural%20health%20monitoring&rft.au=Yang,%20Kang&rft.date=2022-07-01&rft.volume=21&rft.issue=4&rft.spage=1501&rft.epage=1517&rft.pages=1501-1517&rft.issn=1475-9217&rft.eissn=1741-3168&rft_id=info:doi/10.1177/14759217211035532&rft_dat=%3Csage_cross%3E10.1177_14759217211035532%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_14759217211035532&rfr_iscdi=true