Ultrasonic synthetic aperture imaging with interposed transducer–medium coupling path

An interposed coupling material between an ultrasonic transducer and the test medium can be present in various non-destructive inspections and structural health monitoring imaging applications. One example is the wedge medium often used to direct ultrasonic beams into the test material for optimal i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural health monitoring 2019-11, Vol.18 (5-6), p.1543-1556
Hauptverfasser: Sternini, Simone, Liang, Albert Y, Lanza di Scalea, Francesco
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1556
container_issue 5-6
container_start_page 1543
container_title Structural health monitoring
container_volume 18
creator Sternini, Simone
Liang, Albert Y
Lanza di Scalea, Francesco
description An interposed coupling material between an ultrasonic transducer and the test medium can be present in various non-destructive inspections and structural health monitoring imaging applications. One example is the wedge medium often used to direct ultrasonic beams into the test material for optimal interaction with internal defects. Another example is the ultrasonic imaging of multilayered structures. This article discusses the ways to perform synthetic aperture focus ultrasonic imaging in these cases where signal losses and complicated refractions at the coupling material/medium interface take place. Three main steps are proposed to maximize image quality. The first step is the delay-multiply-and-sum algorithm that increases the number of independent terms in the beamforming equation compared to the delay-and-sum algorithm. The second step is the utilization of a ray tracing algorithm to properly account for the refraction of the waves in both transmission and reflection paths, and accounting for both L-waves and S-waves that can potentially propagate. The compounding of multiple wave mode combinations is the third step proposed to significantly improve image quality. Validation experiments are presented for a transducer array on a wedge to image two closely spaced holes in an aluminum block. The delay-multiply-and-sum algorithm and wave mode compounding algorithm are also in principle applicable to other structural health monitoring imaging approaches that use, for example, sparse transducer arrays and guided-wave probing.
doi_str_mv 10.1177/1475921718805514
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1475921718805514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1475921718805514</sage_id><sourcerecordid>10.1177_1475921718805514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-a40caf342404143e70da6a8e311c26634e5603e3651d9643e2f4eefbd2ceeb1d3</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI7uXfYFqrlNmnSWMvgzMODGwWXJJLdthv6RpMjsfAff0CcxZVwJru4H55zL4RByC_QOQMp74DJfZSChKGieAz8jC5AcUgaiOI8c5XTWL8mV9wdKI0qxIO-7Njjlh97qxB_70GCIpEZ0YXKY2E7Vtq-TDxuaxPYB3Th4NEnM9N5MGt3351eHxk5doodpbGfzqEJzTS4q1Xq8-b1Lsnt6fFu_pNvX5836YZvqrICQKk61qhjPOOXAGUpqlFAFMgCdCcE45oIyZCIHsxLRkFUcsdqbTCPuwbAloae_2g3eO6zK0cXS7lgCLedhyr_DxEh6inhVY3kYJtfHhv_7fwBdcmXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrasonic synthetic aperture imaging with interposed transducer–medium coupling path</title><source>SAGE Complete A-Z List</source><creator>Sternini, Simone ; Liang, Albert Y ; Lanza di Scalea, Francesco</creator><creatorcontrib>Sternini, Simone ; Liang, Albert Y ; Lanza di Scalea, Francesco</creatorcontrib><description>An interposed coupling material between an ultrasonic transducer and the test medium can be present in various non-destructive inspections and structural health monitoring imaging applications. One example is the wedge medium often used to direct ultrasonic beams into the test material for optimal interaction with internal defects. Another example is the ultrasonic imaging of multilayered structures. This article discusses the ways to perform synthetic aperture focus ultrasonic imaging in these cases where signal losses and complicated refractions at the coupling material/medium interface take place. Three main steps are proposed to maximize image quality. The first step is the delay-multiply-and-sum algorithm that increases the number of independent terms in the beamforming equation compared to the delay-and-sum algorithm. The second step is the utilization of a ray tracing algorithm to properly account for the refraction of the waves in both transmission and reflection paths, and accounting for both L-waves and S-waves that can potentially propagate. The compounding of multiple wave mode combinations is the third step proposed to significantly improve image quality. Validation experiments are presented for a transducer array on a wedge to image two closely spaced holes in an aluminum block. The delay-multiply-and-sum algorithm and wave mode compounding algorithm are also in principle applicable to other structural health monitoring imaging approaches that use, for example, sparse transducer arrays and guided-wave probing.</description><identifier>ISSN: 1475-9217</identifier><identifier>EISSN: 1741-3168</identifier><identifier>DOI: 10.1177/1475921718805514</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Structural health monitoring, 2019-11, Vol.18 (5-6), p.1543-1556</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-a40caf342404143e70da6a8e311c26634e5603e3651d9643e2f4eefbd2ceeb1d3</citedby><cites>FETCH-LOGICAL-c281t-a40caf342404143e70da6a8e311c26634e5603e3651d9643e2f4eefbd2ceeb1d3</cites><orcidid>0000-0003-0111-2197 ; 0000-0002-6511-2666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1475921718805514$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1475921718805514$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Sternini, Simone</creatorcontrib><creatorcontrib>Liang, Albert Y</creatorcontrib><creatorcontrib>Lanza di Scalea, Francesco</creatorcontrib><title>Ultrasonic synthetic aperture imaging with interposed transducer–medium coupling path</title><title>Structural health monitoring</title><description>An interposed coupling material between an ultrasonic transducer and the test medium can be present in various non-destructive inspections and structural health monitoring imaging applications. One example is the wedge medium often used to direct ultrasonic beams into the test material for optimal interaction with internal defects. Another example is the ultrasonic imaging of multilayered structures. This article discusses the ways to perform synthetic aperture focus ultrasonic imaging in these cases where signal losses and complicated refractions at the coupling material/medium interface take place. Three main steps are proposed to maximize image quality. The first step is the delay-multiply-and-sum algorithm that increases the number of independent terms in the beamforming equation compared to the delay-and-sum algorithm. The second step is the utilization of a ray tracing algorithm to properly account for the refraction of the waves in both transmission and reflection paths, and accounting for both L-waves and S-waves that can potentially propagate. The compounding of multiple wave mode combinations is the third step proposed to significantly improve image quality. Validation experiments are presented for a transducer array on a wedge to image two closely spaced holes in an aluminum block. The delay-multiply-and-sum algorithm and wave mode compounding algorithm are also in principle applicable to other structural health monitoring imaging approaches that use, for example, sparse transducer arrays and guided-wave probing.</description><issn>1475-9217</issn><issn>1741-3168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoOI7uXfYFqrlNmnSWMvgzMODGwWXJJLdthv6RpMjsfAff0CcxZVwJru4H55zL4RByC_QOQMp74DJfZSChKGieAz8jC5AcUgaiOI8c5XTWL8mV9wdKI0qxIO-7Njjlh97qxB_70GCIpEZ0YXKY2E7Vtq-TDxuaxPYB3Th4NEnM9N5MGt3351eHxk5doodpbGfzqEJzTS4q1Xq8-b1Lsnt6fFu_pNvX5836YZvqrICQKk61qhjPOOXAGUpqlFAFMgCdCcE45oIyZCIHsxLRkFUcsdqbTCPuwbAloae_2g3eO6zK0cXS7lgCLedhyr_DxEh6inhVY3kYJtfHhv_7fwBdcmXo</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Sternini, Simone</creator><creator>Liang, Albert Y</creator><creator>Lanza di Scalea, Francesco</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0111-2197</orcidid><orcidid>https://orcid.org/0000-0002-6511-2666</orcidid></search><sort><creationdate>201911</creationdate><title>Ultrasonic synthetic aperture imaging with interposed transducer–medium coupling path</title><author>Sternini, Simone ; Liang, Albert Y ; Lanza di Scalea, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-a40caf342404143e70da6a8e311c26634e5603e3651d9643e2f4eefbd2ceeb1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sternini, Simone</creatorcontrib><creatorcontrib>Liang, Albert Y</creatorcontrib><creatorcontrib>Lanza di Scalea, Francesco</creatorcontrib><collection>CrossRef</collection><jtitle>Structural health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sternini, Simone</au><au>Liang, Albert Y</au><au>Lanza di Scalea, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasonic synthetic aperture imaging with interposed transducer–medium coupling path</atitle><jtitle>Structural health monitoring</jtitle><date>2019-11</date><risdate>2019</risdate><volume>18</volume><issue>5-6</issue><spage>1543</spage><epage>1556</epage><pages>1543-1556</pages><issn>1475-9217</issn><eissn>1741-3168</eissn><abstract>An interposed coupling material between an ultrasonic transducer and the test medium can be present in various non-destructive inspections and structural health monitoring imaging applications. One example is the wedge medium often used to direct ultrasonic beams into the test material for optimal interaction with internal defects. Another example is the ultrasonic imaging of multilayered structures. This article discusses the ways to perform synthetic aperture focus ultrasonic imaging in these cases where signal losses and complicated refractions at the coupling material/medium interface take place. Three main steps are proposed to maximize image quality. The first step is the delay-multiply-and-sum algorithm that increases the number of independent terms in the beamforming equation compared to the delay-and-sum algorithm. The second step is the utilization of a ray tracing algorithm to properly account for the refraction of the waves in both transmission and reflection paths, and accounting for both L-waves and S-waves that can potentially propagate. The compounding of multiple wave mode combinations is the third step proposed to significantly improve image quality. Validation experiments are presented for a transducer array on a wedge to image two closely spaced holes in an aluminum block. The delay-multiply-and-sum algorithm and wave mode compounding algorithm are also in principle applicable to other structural health monitoring imaging approaches that use, for example, sparse transducer arrays and guided-wave probing.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1475921718805514</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0111-2197</orcidid><orcidid>https://orcid.org/0000-0002-6511-2666</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1475-9217
ispartof Structural health monitoring, 2019-11, Vol.18 (5-6), p.1543-1556
issn 1475-9217
1741-3168
language eng
recordid cdi_crossref_primary_10_1177_1475921718805514
source SAGE Complete A-Z List
title Ultrasonic synthetic aperture imaging with interposed transducer–medium coupling path
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasonic%20synthetic%20aperture%20imaging%20with%20interposed%20transducer%E2%80%93medium%20coupling%20path&rft.jtitle=Structural%20health%20monitoring&rft.au=Sternini,%20Simone&rft.date=2019-11&rft.volume=18&rft.issue=5-6&rft.spage=1543&rft.epage=1556&rft.pages=1543-1556&rft.issn=1475-9217&rft.eissn=1741-3168&rft_id=info:doi/10.1177/1475921718805514&rft_dat=%3Csage_cross%3E10.1177_1475921718805514%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1475921718805514&rfr_iscdi=true