Machine learning methods for multi-rotor UAV structural damage detection based on MEMS sensor
Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detect...
Gespeichert in:
Veröffentlicht in: | International journal of aeroacoustics 2023-11, Vol.22 (7-8), p.656-674 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 674 |
---|---|
container_issue | 7-8 |
container_start_page | 656 |
container_title | International journal of aeroacoustics |
container_volume | 22 |
creator | Ma, Yumeng Mustapha, Faizal Ishak, Mohamad Ridzwan Abdul Rahim, Sharafiz Mustapha, Mazli |
description | Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detecting damage caused by loosened screws which is not easy founded based on vibration signals. An independent data acquisition device with a Micro Electro Mechanical Systems (MEMS) sensor is designed and fixed onto the multi-rotor UAVs to acquire the vibration data. Four machine learning algorithms, namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree, and Random Forest, are employed for damage detection. The results demonstrate successful utilization of the vibration data from the MEMS sensor for damage detection, with the random forest model outperforming other models with an accuracy of 90.07. |
doi_str_mv | 10.1177/1475472X231206495 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1475472X231206495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1475472X231206495</sage_id><sourcerecordid>10.1177_1475472X231206495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-9d79c633f0652007eccd1756171a7bfe90afdd16c8312769a9407ab93d9d5a23</originalsourceid><addsrcrecordid>eNp9kMFOwzAQRC0EEqXwAdz8AylrO7HrY1UVqNSIAwVxQdHWdtpUSYxs58Dfk6rckDjtSDtvtTOE3DOYMabUA8tVkSv-wQXjIHNdXJAJh3ye5QDikkxO--xkuCY3MR4BOAMFE_JZojk0vaOtw9A3_Z52Lh28jbT2gXZDm5os-DTqt8U7jSkMJg0BW2qxw72j1iVnUuN7usPoLB1FuSpfaXR99OGWXNXYRnf3O6dk-7jaLp-zzcvTernYZIYLmTJtlTZSiBpkwQGUM8YyVUimGKpd7TRgbS2TZj6mU1KjzkHhTgurbYFcTAk7nzXBxxhcXX2FpsPwXTGoTvVUf-oZmdmZiWOM6uiH0I8f_gP8AGdcZbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning methods for multi-rotor UAV structural damage detection based on MEMS sensor</title><source>SAGE Complete A-Z List</source><creator>Ma, Yumeng ; Mustapha, Faizal ; Ishak, Mohamad Ridzwan ; Abdul Rahim, Sharafiz ; Mustapha, Mazli</creator><creatorcontrib>Ma, Yumeng ; Mustapha, Faizal ; Ishak, Mohamad Ridzwan ; Abdul Rahim, Sharafiz ; Mustapha, Mazli</creatorcontrib><description>Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detecting damage caused by loosened screws which is not easy founded based on vibration signals. An independent data acquisition device with a Micro Electro Mechanical Systems (MEMS) sensor is designed and fixed onto the multi-rotor UAVs to acquire the vibration data. Four machine learning algorithms, namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree, and Random Forest, are employed for damage detection. The results demonstrate successful utilization of the vibration data from the MEMS sensor for damage detection, with the random forest model outperforming other models with an accuracy of 90.07.</description><identifier>ISSN: 1475-472X</identifier><identifier>EISSN: 2048-4003</identifier><identifier>DOI: 10.1177/1475472X231206495</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>International journal of aeroacoustics, 2023-11, Vol.22 (7-8), p.656-674</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-9d79c633f0652007eccd1756171a7bfe90afdd16c8312769a9407ab93d9d5a23</cites><orcidid>0000-0001-5403-2620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1475472X231206495$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1475472X231206495$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Ma, Yumeng</creatorcontrib><creatorcontrib>Mustapha, Faizal</creatorcontrib><creatorcontrib>Ishak, Mohamad Ridzwan</creatorcontrib><creatorcontrib>Abdul Rahim, Sharafiz</creatorcontrib><creatorcontrib>Mustapha, Mazli</creatorcontrib><title>Machine learning methods for multi-rotor UAV structural damage detection based on MEMS sensor</title><title>International journal of aeroacoustics</title><description>Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detecting damage caused by loosened screws which is not easy founded based on vibration signals. An independent data acquisition device with a Micro Electro Mechanical Systems (MEMS) sensor is designed and fixed onto the multi-rotor UAVs to acquire the vibration data. Four machine learning algorithms, namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree, and Random Forest, are employed for damage detection. The results demonstrate successful utilization of the vibration data from the MEMS sensor for damage detection, with the random forest model outperforming other models with an accuracy of 90.07.</description><issn>1475-472X</issn><issn>2048-4003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAQRC0EEqXwAdz8AylrO7HrY1UVqNSIAwVxQdHWdtpUSYxs58Dfk6rckDjtSDtvtTOE3DOYMabUA8tVkSv-wQXjIHNdXJAJh3ye5QDikkxO--xkuCY3MR4BOAMFE_JZojk0vaOtw9A3_Z52Lh28jbT2gXZDm5os-DTqt8U7jSkMJg0BW2qxw72j1iVnUuN7usPoLB1FuSpfaXR99OGWXNXYRnf3O6dk-7jaLp-zzcvTernYZIYLmTJtlTZSiBpkwQGUM8YyVUimGKpd7TRgbS2TZj6mU1KjzkHhTgurbYFcTAk7nzXBxxhcXX2FpsPwXTGoTvVUf-oZmdmZiWOM6uiH0I8f_gP8AGdcZbA</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Ma, Yumeng</creator><creator>Mustapha, Faizal</creator><creator>Ishak, Mohamad Ridzwan</creator><creator>Abdul Rahim, Sharafiz</creator><creator>Mustapha, Mazli</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5403-2620</orcidid></search><sort><creationdate>202311</creationdate><title>Machine learning methods for multi-rotor UAV structural damage detection based on MEMS sensor</title><author>Ma, Yumeng ; Mustapha, Faizal ; Ishak, Mohamad Ridzwan ; Abdul Rahim, Sharafiz ; Mustapha, Mazli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-9d79c633f0652007eccd1756171a7bfe90afdd16c8312769a9407ab93d9d5a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yumeng</creatorcontrib><creatorcontrib>Mustapha, Faizal</creatorcontrib><creatorcontrib>Ishak, Mohamad Ridzwan</creatorcontrib><creatorcontrib>Abdul Rahim, Sharafiz</creatorcontrib><creatorcontrib>Mustapha, Mazli</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of aeroacoustics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Yumeng</au><au>Mustapha, Faizal</au><au>Ishak, Mohamad Ridzwan</au><au>Abdul Rahim, Sharafiz</au><au>Mustapha, Mazli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning methods for multi-rotor UAV structural damage detection based on MEMS sensor</atitle><jtitle>International journal of aeroacoustics</jtitle><date>2023-11</date><risdate>2023</risdate><volume>22</volume><issue>7-8</issue><spage>656</spage><epage>674</epage><pages>656-674</pages><issn>1475-472X</issn><eissn>2048-4003</eissn><abstract>Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detecting damage caused by loosened screws which is not easy founded based on vibration signals. An independent data acquisition device with a Micro Electro Mechanical Systems (MEMS) sensor is designed and fixed onto the multi-rotor UAVs to acquire the vibration data. Four machine learning algorithms, namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree, and Random Forest, are employed for damage detection. The results demonstrate successful utilization of the vibration data from the MEMS sensor for damage detection, with the random forest model outperforming other models with an accuracy of 90.07.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1475472X231206495</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5403-2620</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1475-472X |
ispartof | International journal of aeroacoustics, 2023-11, Vol.22 (7-8), p.656-674 |
issn | 1475-472X 2048-4003 |
language | eng |
recordid | cdi_crossref_primary_10_1177_1475472X231206495 |
source | SAGE Complete A-Z List |
title | Machine learning methods for multi-rotor UAV structural damage detection based on MEMS sensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20methods%20for%20multi-rotor%20UAV%20structural%20damage%20detection%20based%20on%20MEMS%20sensor&rft.jtitle=International%20journal%20of%20aeroacoustics&rft.au=Ma,%20Yumeng&rft.date=2023-11&rft.volume=22&rft.issue=7-8&rft.spage=656&rft.epage=674&rft.pages=656-674&rft.issn=1475-472X&rft.eissn=2048-4003&rft_id=info:doi/10.1177/1475472X231206495&rft_dat=%3Csage_cross%3E10.1177_1475472X231206495%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1475472X231206495&rfr_iscdi=true |