Machine learning methods for multi-rotor UAV structural damage detection based on MEMS sensor

Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of aeroacoustics 2023-11, Vol.22 (7-8), p.656-674
Hauptverfasser: Ma, Yumeng, Mustapha, Faizal, Ishak, Mohamad Ridzwan, Abdul Rahim, Sharafiz, Mustapha, Mazli
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 674
container_issue 7-8
container_start_page 656
container_title International journal of aeroacoustics
container_volume 22
creator Ma, Yumeng
Mustapha, Faizal
Ishak, Mohamad Ridzwan
Abdul Rahim, Sharafiz
Mustapha, Mazli
description Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detecting damage caused by loosened screws which is not easy founded based on vibration signals. An independent data acquisition device with a Micro Electro Mechanical Systems (MEMS) sensor is designed and fixed onto the multi-rotor UAVs to acquire the vibration data. Four machine learning algorithms, namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree, and Random Forest, are employed for damage detection. The results demonstrate successful utilization of the vibration data from the MEMS sensor for damage detection, with the random forest model outperforming other models with an accuracy of 90.07.
doi_str_mv 10.1177/1475472X231206495
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1475472X231206495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1475472X231206495</sage_id><sourcerecordid>10.1177_1475472X231206495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-9d79c633f0652007eccd1756171a7bfe90afdd16c8312769a9407ab93d9d5a23</originalsourceid><addsrcrecordid>eNp9kMFOwzAQRC0EEqXwAdz8AylrO7HrY1UVqNSIAwVxQdHWdtpUSYxs58Dfk6rckDjtSDtvtTOE3DOYMabUA8tVkSv-wQXjIHNdXJAJh3ye5QDikkxO--xkuCY3MR4BOAMFE_JZojk0vaOtw9A3_Z52Lh28jbT2gXZDm5os-DTqt8U7jSkMJg0BW2qxw72j1iVnUuN7usPoLB1FuSpfaXR99OGWXNXYRnf3O6dk-7jaLp-zzcvTernYZIYLmTJtlTZSiBpkwQGUM8YyVUimGKpd7TRgbS2TZj6mU1KjzkHhTgurbYFcTAk7nzXBxxhcXX2FpsPwXTGoTvVUf-oZmdmZiWOM6uiH0I8f_gP8AGdcZbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning methods for multi-rotor UAV structural damage detection based on MEMS sensor</title><source>SAGE Complete A-Z List</source><creator>Ma, Yumeng ; Mustapha, Faizal ; Ishak, Mohamad Ridzwan ; Abdul Rahim, Sharafiz ; Mustapha, Mazli</creator><creatorcontrib>Ma, Yumeng ; Mustapha, Faizal ; Ishak, Mohamad Ridzwan ; Abdul Rahim, Sharafiz ; Mustapha, Mazli</creatorcontrib><description>Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detecting damage caused by loosened screws which is not easy founded based on vibration signals. An independent data acquisition device with a Micro Electro Mechanical Systems (MEMS) sensor is designed and fixed onto the multi-rotor UAVs to acquire the vibration data. Four machine learning algorithms, namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree, and Random Forest, are employed for damage detection. The results demonstrate successful utilization of the vibration data from the MEMS sensor for damage detection, with the random forest model outperforming other models with an accuracy of 90.07.</description><identifier>ISSN: 1475-472X</identifier><identifier>EISSN: 2048-4003</identifier><identifier>DOI: 10.1177/1475472X231206495</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>International journal of aeroacoustics, 2023-11, Vol.22 (7-8), p.656-674</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-9d79c633f0652007eccd1756171a7bfe90afdd16c8312769a9407ab93d9d5a23</cites><orcidid>0000-0001-5403-2620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1475472X231206495$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1475472X231206495$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Ma, Yumeng</creatorcontrib><creatorcontrib>Mustapha, Faizal</creatorcontrib><creatorcontrib>Ishak, Mohamad Ridzwan</creatorcontrib><creatorcontrib>Abdul Rahim, Sharafiz</creatorcontrib><creatorcontrib>Mustapha, Mazli</creatorcontrib><title>Machine learning methods for multi-rotor UAV structural damage detection based on MEMS sensor</title><title>International journal of aeroacoustics</title><description>Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detecting damage caused by loosened screws which is not easy founded based on vibration signals. An independent data acquisition device with a Micro Electro Mechanical Systems (MEMS) sensor is designed and fixed onto the multi-rotor UAVs to acquire the vibration data. Four machine learning algorithms, namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree, and Random Forest, are employed for damage detection. The results demonstrate successful utilization of the vibration data from the MEMS sensor for damage detection, with the random forest model outperforming other models with an accuracy of 90.07.</description><issn>1475-472X</issn><issn>2048-4003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAQRC0EEqXwAdz8AylrO7HrY1UVqNSIAwVxQdHWdtpUSYxs58Dfk6rckDjtSDtvtTOE3DOYMabUA8tVkSv-wQXjIHNdXJAJh3ye5QDikkxO--xkuCY3MR4BOAMFE_JZojk0vaOtw9A3_Z52Lh28jbT2gXZDm5os-DTqt8U7jSkMJg0BW2qxw72j1iVnUuN7usPoLB1FuSpfaXR99OGWXNXYRnf3O6dk-7jaLp-zzcvTernYZIYLmTJtlTZSiBpkwQGUM8YyVUimGKpd7TRgbS2TZj6mU1KjzkHhTgurbYFcTAk7nzXBxxhcXX2FpsPwXTGoTvVUf-oZmdmZiWOM6uiH0I8f_gP8AGdcZbA</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Ma, Yumeng</creator><creator>Mustapha, Faizal</creator><creator>Ishak, Mohamad Ridzwan</creator><creator>Abdul Rahim, Sharafiz</creator><creator>Mustapha, Mazli</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5403-2620</orcidid></search><sort><creationdate>202311</creationdate><title>Machine learning methods for multi-rotor UAV structural damage detection based on MEMS sensor</title><author>Ma, Yumeng ; Mustapha, Faizal ; Ishak, Mohamad Ridzwan ; Abdul Rahim, Sharafiz ; Mustapha, Mazli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-9d79c633f0652007eccd1756171a7bfe90afdd16c8312769a9407ab93d9d5a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yumeng</creatorcontrib><creatorcontrib>Mustapha, Faizal</creatorcontrib><creatorcontrib>Ishak, Mohamad Ridzwan</creatorcontrib><creatorcontrib>Abdul Rahim, Sharafiz</creatorcontrib><creatorcontrib>Mustapha, Mazli</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of aeroacoustics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Yumeng</au><au>Mustapha, Faizal</au><au>Ishak, Mohamad Ridzwan</au><au>Abdul Rahim, Sharafiz</au><au>Mustapha, Mazli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning methods for multi-rotor UAV structural damage detection based on MEMS sensor</atitle><jtitle>International journal of aeroacoustics</jtitle><date>2023-11</date><risdate>2023</risdate><volume>22</volume><issue>7-8</issue><spage>656</spage><epage>674</epage><pages>656-674</pages><issn>1475-472X</issn><eissn>2048-4003</eissn><abstract>Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detecting damage caused by loosened screws which is not easy founded based on vibration signals. An independent data acquisition device with a Micro Electro Mechanical Systems (MEMS) sensor is designed and fixed onto the multi-rotor UAVs to acquire the vibration data. Four machine learning algorithms, namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree, and Random Forest, are employed for damage detection. The results demonstrate successful utilization of the vibration data from the MEMS sensor for damage detection, with the random forest model outperforming other models with an accuracy of 90.07.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1475472X231206495</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5403-2620</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1475-472X
ispartof International journal of aeroacoustics, 2023-11, Vol.22 (7-8), p.656-674
issn 1475-472X
2048-4003
language eng
recordid cdi_crossref_primary_10_1177_1475472X231206495
source SAGE Complete A-Z List
title Machine learning methods for multi-rotor UAV structural damage detection based on MEMS sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20methods%20for%20multi-rotor%20UAV%20structural%20damage%20detection%20based%20on%20MEMS%20sensor&rft.jtitle=International%20journal%20of%20aeroacoustics&rft.au=Ma,%20Yumeng&rft.date=2023-11&rft.volume=22&rft.issue=7-8&rft.spage=656&rft.epage=674&rft.pages=656-674&rft.issn=1475-472X&rft.eissn=2048-4003&rft_id=info:doi/10.1177/1475472X231206495&rft_dat=%3Csage_cross%3E10.1177_1475472X231206495%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1475472X231206495&rfr_iscdi=true