Dynamic prediction of the pre-dehumidification of a radiant floor cooling and displacement ventilation system based on computational fluid dynamics and a back-propagation neural network: A case study of an office room

This study was carried out to solve the problem of condensation in radiant floor cooling systems. Computational fluid dynamics simulation and back-propagation neural network prediction were employed to conduct thorough research to predict the effects of the displacement ventilation dehumidification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indoor + built environment 2022-12, Vol.31 (10), p.2386-2410
Hauptverfasser: Su, Meng, Liu, Jiying, Zhou, Shiyu, Miao, Jikui, Kim, Moon Keun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2410
container_issue 10
container_start_page 2386
container_title Indoor + built environment
container_volume 31
creator Su, Meng
Liu, Jiying
Zhou, Shiyu
Miao, Jikui
Kim, Moon Keun
description This study was carried out to solve the problem of condensation in radiant floor cooling systems. Computational fluid dynamics simulation and back-propagation neural network prediction were employed to conduct thorough research to predict the effects of the displacement ventilation dehumidification phase in an office building located in Jinan, China. The effects of the air supply temperature (T as ), air supply flow rate (V as ), air supply humidity ratio (H as ), floor temperature (T floor ), initial indoor temperature (T ini ) and relative humidity (H ini ) on the duration and energy consumption of pre-dehumidification were investigated. The big data show the air dew point temperature (T ad ) produced the most significant effect on the pre-dehumidification duration and energy consumption, while T as would cause the least significant effect. With the decrease of T ad , the pre-dehumidification duration and energy consumption were, respectively, decreased by 59.1% and 44.2%. Furthermore, with the variation of V as , the energy consumption exhibited a fluctuating trend. This study provides a novel and effective method to assess the pre-dehumidification control of radiant floor surfaces by considering different initial indoor conditions and air supply parameters.
doi_str_mv 10.1177/1420326X221107110
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1420326X221107110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1420326X221107110</sage_id><sourcerecordid>10.1177_1420326X221107110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-5a474ff2b6509b0029565767b832a0bdea9ad2aab8bcd31a18d95a0168da638c3</originalsourceid><addsrcrecordid>eNp9UUtOwzAQtRBIlMIB2PkCKbbzccKuKl-pEhuQ2EUT22ndJnFkJ6AcldvgJLBCYmF7PO-jpxmErilZUcr5DY0YCVnyzhilhPtzgha-FwaEcHI61SQYCefowrkDIYwRHi3Q193QQK0Fbq2SWnTaNNiUuNursRNIte9rLXWpBfxigC1IDU2Hy8oYi4UxlW52GBqJpXZtBULVysMf_tLVrHOD61SNC3BKYv8Xpm77bsKg8ka99uI5ipucwHPFMWitaWE3ezSqt57cqO7T2OMtXmPh7bDrejlMwcZ4PqnC1pj6Ep2VUDl19fMu0dvD_evmKdi-PD5v1ttAsDTqghgiHpUlK5KYZIWfSxYnMU94kYYMSCEVZCAZQJEWQoYUaCqzGAhNUglJmIpwiejsK6xxzqoyb62uwQ45Jfm4m_zPbrxmNWsc7FR-ML31U3D_CL4B-NaVBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic prediction of the pre-dehumidification of a radiant floor cooling and displacement ventilation system based on computational fluid dynamics and a back-propagation neural network: A case study of an office room</title><source>Access via SAGE</source><creator>Su, Meng ; Liu, Jiying ; Zhou, Shiyu ; Miao, Jikui ; Kim, Moon Keun</creator><creatorcontrib>Su, Meng ; Liu, Jiying ; Zhou, Shiyu ; Miao, Jikui ; Kim, Moon Keun</creatorcontrib><description>This study was carried out to solve the problem of condensation in radiant floor cooling systems. Computational fluid dynamics simulation and back-propagation neural network prediction were employed to conduct thorough research to predict the effects of the displacement ventilation dehumidification phase in an office building located in Jinan, China. The effects of the air supply temperature (T as ), air supply flow rate (V as ), air supply humidity ratio (H as ), floor temperature (T floor ), initial indoor temperature (T ini ) and relative humidity (H ini ) on the duration and energy consumption of pre-dehumidification were investigated. The big data show the air dew point temperature (T ad ) produced the most significant effect on the pre-dehumidification duration and energy consumption, while T as would cause the least significant effect. With the decrease of T ad , the pre-dehumidification duration and energy consumption were, respectively, decreased by 59.1% and 44.2%. Furthermore, with the variation of V as , the energy consumption exhibited a fluctuating trend. This study provides a novel and effective method to assess the pre-dehumidification control of radiant floor surfaces by considering different initial indoor conditions and air supply parameters.</description><identifier>ISSN: 1420-326X</identifier><identifier>EISSN: 1423-0070</identifier><identifier>DOI: 10.1177/1420326X221107110</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Indoor + built environment, 2022-12, Vol.31 (10), p.2386-2410</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-5a474ff2b6509b0029565767b832a0bdea9ad2aab8bcd31a18d95a0168da638c3</citedby><cites>FETCH-LOGICAL-c284t-5a474ff2b6509b0029565767b832a0bdea9ad2aab8bcd31a18d95a0168da638c3</cites><orcidid>0000-0001-7385-6959 ; 0000-0001-9614-5412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1420326X221107110$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1420326X221107110$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Su, Meng</creatorcontrib><creatorcontrib>Liu, Jiying</creatorcontrib><creatorcontrib>Zhou, Shiyu</creatorcontrib><creatorcontrib>Miao, Jikui</creatorcontrib><creatorcontrib>Kim, Moon Keun</creatorcontrib><title>Dynamic prediction of the pre-dehumidification of a radiant floor cooling and displacement ventilation system based on computational fluid dynamics and a back-propagation neural network: A case study of an office room</title><title>Indoor + built environment</title><description>This study was carried out to solve the problem of condensation in radiant floor cooling systems. Computational fluid dynamics simulation and back-propagation neural network prediction were employed to conduct thorough research to predict the effects of the displacement ventilation dehumidification phase in an office building located in Jinan, China. The effects of the air supply temperature (T as ), air supply flow rate (V as ), air supply humidity ratio (H as ), floor temperature (T floor ), initial indoor temperature (T ini ) and relative humidity (H ini ) on the duration and energy consumption of pre-dehumidification were investigated. The big data show the air dew point temperature (T ad ) produced the most significant effect on the pre-dehumidification duration and energy consumption, while T as would cause the least significant effect. With the decrease of T ad , the pre-dehumidification duration and energy consumption were, respectively, decreased by 59.1% and 44.2%. Furthermore, with the variation of V as , the energy consumption exhibited a fluctuating trend. This study provides a novel and effective method to assess the pre-dehumidification control of radiant floor surfaces by considering different initial indoor conditions and air supply parameters.</description><issn>1420-326X</issn><issn>1423-0070</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UUtOwzAQtRBIlMIB2PkCKbbzccKuKl-pEhuQ2EUT22ndJnFkJ6AcldvgJLBCYmF7PO-jpxmErilZUcr5DY0YCVnyzhilhPtzgha-FwaEcHI61SQYCefowrkDIYwRHi3Q193QQK0Fbq2SWnTaNNiUuNursRNIte9rLXWpBfxigC1IDU2Hy8oYi4UxlW52GBqJpXZtBULVysMf_tLVrHOD61SNC3BKYv8Xpm77bsKg8ka99uI5ipucwHPFMWitaWE3ezSqt57cqO7T2OMtXmPh7bDrejlMwcZ4PqnC1pj6Ep2VUDl19fMu0dvD_evmKdi-PD5v1ttAsDTqghgiHpUlK5KYZIWfSxYnMU94kYYMSCEVZCAZQJEWQoYUaCqzGAhNUglJmIpwiejsK6xxzqoyb62uwQ45Jfm4m_zPbrxmNWsc7FR-ML31U3D_CL4B-NaVBg</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Su, Meng</creator><creator>Liu, Jiying</creator><creator>Zhou, Shiyu</creator><creator>Miao, Jikui</creator><creator>Kim, Moon Keun</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7385-6959</orcidid><orcidid>https://orcid.org/0000-0001-9614-5412</orcidid></search><sort><creationdate>202212</creationdate><title>Dynamic prediction of the pre-dehumidification of a radiant floor cooling and displacement ventilation system based on computational fluid dynamics and a back-propagation neural network: A case study of an office room</title><author>Su, Meng ; Liu, Jiying ; Zhou, Shiyu ; Miao, Jikui ; Kim, Moon Keun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-5a474ff2b6509b0029565767b832a0bdea9ad2aab8bcd31a18d95a0168da638c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Meng</creatorcontrib><creatorcontrib>Liu, Jiying</creatorcontrib><creatorcontrib>Zhou, Shiyu</creatorcontrib><creatorcontrib>Miao, Jikui</creatorcontrib><creatorcontrib>Kim, Moon Keun</creatorcontrib><collection>CrossRef</collection><jtitle>Indoor + built environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Meng</au><au>Liu, Jiying</au><au>Zhou, Shiyu</au><au>Miao, Jikui</au><au>Kim, Moon Keun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic prediction of the pre-dehumidification of a radiant floor cooling and displacement ventilation system based on computational fluid dynamics and a back-propagation neural network: A case study of an office room</atitle><jtitle>Indoor + built environment</jtitle><date>2022-12</date><risdate>2022</risdate><volume>31</volume><issue>10</issue><spage>2386</spage><epage>2410</epage><pages>2386-2410</pages><issn>1420-326X</issn><eissn>1423-0070</eissn><abstract>This study was carried out to solve the problem of condensation in radiant floor cooling systems. Computational fluid dynamics simulation and back-propagation neural network prediction were employed to conduct thorough research to predict the effects of the displacement ventilation dehumidification phase in an office building located in Jinan, China. The effects of the air supply temperature (T as ), air supply flow rate (V as ), air supply humidity ratio (H as ), floor temperature (T floor ), initial indoor temperature (T ini ) and relative humidity (H ini ) on the duration and energy consumption of pre-dehumidification were investigated. The big data show the air dew point temperature (T ad ) produced the most significant effect on the pre-dehumidification duration and energy consumption, while T as would cause the least significant effect. With the decrease of T ad , the pre-dehumidification duration and energy consumption were, respectively, decreased by 59.1% and 44.2%. Furthermore, with the variation of V as , the energy consumption exhibited a fluctuating trend. This study provides a novel and effective method to assess the pre-dehumidification control of radiant floor surfaces by considering different initial indoor conditions and air supply parameters.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1420326X221107110</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-7385-6959</orcidid><orcidid>https://orcid.org/0000-0001-9614-5412</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1420-326X
ispartof Indoor + built environment, 2022-12, Vol.31 (10), p.2386-2410
issn 1420-326X
1423-0070
language eng
recordid cdi_crossref_primary_10_1177_1420326X221107110
source Access via SAGE
title Dynamic prediction of the pre-dehumidification of a radiant floor cooling and displacement ventilation system based on computational fluid dynamics and a back-propagation neural network: A case study of an office room
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20prediction%20of%20the%20pre-dehumidification%20of%20a%20radiant%20floor%20cooling%20and%20displacement%20ventilation%20system%20based%20on%20computational%20fluid%20dynamics%20and%20a%20back-propagation%20neural%20network:%20A%20case%20study%20of%20an%20office%20room&rft.jtitle=Indoor%20+%20built%20environment&rft.au=Su,%20Meng&rft.date=2022-12&rft.volume=31&rft.issue=10&rft.spage=2386&rft.epage=2410&rft.pages=2386-2410&rft.issn=1420-326X&rft.eissn=1423-0070&rft_id=info:doi/10.1177/1420326X221107110&rft_dat=%3Csage_cross%3E10.1177_1420326X221107110%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1420326X221107110&rfr_iscdi=true