Predictions of vertical train-bridge response using artificial neural network-based surrogate model
To improve the efficiency of reliability calculations for vehicle-bridge systems, we present a surrogate modeling method based on a nonlinear autoregressive with exogenous input artificial neural network model and an important sample, which can forecast responses of dynamic systems, such as vehicle-...
Gespeichert in:
Veröffentlicht in: | Advances in structural engineering 2019-09, Vol.22 (12), p.2712-2723 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2723 |
---|---|
container_issue | 12 |
container_start_page | 2712 |
container_title | Advances in structural engineering |
container_volume | 22 |
creator | Han, Xu Xiang, Huoyue Li, Yongle Wang, Yichao |
description | To improve the efficiency of reliability calculations for vehicle-bridge systems, we present a surrogate modeling method based on a nonlinear autoregressive with exogenous input artificial neural network model and an important sample, which can forecast responses of dynamic systems, such as vehicle-bridge systems, subjected to stochastic excitations. We also propose a process to analyze the method. A quarter-vehicle model is used to verify the proposed method’s precision, and the nonlinear autoregressive with exogenous input artificial neural network model is used to predict responses of vertical vehicle-bridge systems. The results show that, compared to other training samples, the nonlinear autoregressive with exogenous input artificial neural network model has better prediction accuracy when the sample with the maximum response is considered as an important sample and is used to train the nonlinear autoregressive with exogenous input artificial neural network model, and it requires only two-time numerical simulation (or Monte Carlo simulation) at most, which is used in the training of the nonlinear autoregressive with exogenous input artificial neural network model. |
doi_str_mv | 10.1177/1369433219849809 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1369433219849809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1369433219849809</sage_id><sourcerecordid>10.1177_1369433219849809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-8c9fd51f52e3a05b384a92678056a24ca1d851671c8e0bb405e8ca3907bb97023</originalsourceid><addsrcrecordid>eNp1kE1LxDAYhIMouK7ePeYPRPMmaZMcZfELBD3ouSTp25J1t1mSVvHf23U9CZ7mMM8MwxByCfwKQOtrkLVVUgqwRlnD7RFZCK4MUxzgmCz2Ntv7p-SslDXnILSGBQkvGdsYxpiGQlNHPzCPMbgNHbOLA_M5tj3SjGU3A0inEoeeupnpYogzNuCUf2T8TPmdeVewpWXKOfVuRLpNLW7OyUnnNgUvfnVJ3u5uX1cP7On5_nF188SCMDAyE2zXVtBVAqXjlZdGOStqbXhVO6GCg9ZUUGsIBrn3ildogpOWa--t5kIuCT_0hpxKydg1uxy3Ln81wJv9Sc3fk-YIO0SK67FZpykP88L_-W-Rh2he</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predictions of vertical train-bridge response using artificial neural network-based surrogate model</title><source>SAGE Complete A-Z List</source><creator>Han, Xu ; Xiang, Huoyue ; Li, Yongle ; Wang, Yichao</creator><creatorcontrib>Han, Xu ; Xiang, Huoyue ; Li, Yongle ; Wang, Yichao</creatorcontrib><description>To improve the efficiency of reliability calculations for vehicle-bridge systems, we present a surrogate modeling method based on a nonlinear autoregressive with exogenous input artificial neural network model and an important sample, which can forecast responses of dynamic systems, such as vehicle-bridge systems, subjected to stochastic excitations. We also propose a process to analyze the method. A quarter-vehicle model is used to verify the proposed method’s precision, and the nonlinear autoregressive with exogenous input artificial neural network model is used to predict responses of vertical vehicle-bridge systems. The results show that, compared to other training samples, the nonlinear autoregressive with exogenous input artificial neural network model has better prediction accuracy when the sample with the maximum response is considered as an important sample and is used to train the nonlinear autoregressive with exogenous input artificial neural network model, and it requires only two-time numerical simulation (or Monte Carlo simulation) at most, which is used in the training of the nonlinear autoregressive with exogenous input artificial neural network model.</description><identifier>ISSN: 1369-4332</identifier><identifier>EISSN: 2048-4011</identifier><identifier>DOI: 10.1177/1369433219849809</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Advances in structural engineering, 2019-09, Vol.22 (12), p.2712-2723</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-8c9fd51f52e3a05b384a92678056a24ca1d851671c8e0bb405e8ca3907bb97023</citedby><cites>FETCH-LOGICAL-c281t-8c9fd51f52e3a05b384a92678056a24ca1d851671c8e0bb405e8ca3907bb97023</cites><orcidid>0000-0001-6612-6181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1369433219849809$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1369433219849809$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21817,27922,27923,43619,43620</link.rule.ids></links><search><creatorcontrib>Han, Xu</creatorcontrib><creatorcontrib>Xiang, Huoyue</creatorcontrib><creatorcontrib>Li, Yongle</creatorcontrib><creatorcontrib>Wang, Yichao</creatorcontrib><title>Predictions of vertical train-bridge response using artificial neural network-based surrogate model</title><title>Advances in structural engineering</title><description>To improve the efficiency of reliability calculations for vehicle-bridge systems, we present a surrogate modeling method based on a nonlinear autoregressive with exogenous input artificial neural network model and an important sample, which can forecast responses of dynamic systems, such as vehicle-bridge systems, subjected to stochastic excitations. We also propose a process to analyze the method. A quarter-vehicle model is used to verify the proposed method’s precision, and the nonlinear autoregressive with exogenous input artificial neural network model is used to predict responses of vertical vehicle-bridge systems. The results show that, compared to other training samples, the nonlinear autoregressive with exogenous input artificial neural network model has better prediction accuracy when the sample with the maximum response is considered as an important sample and is used to train the nonlinear autoregressive with exogenous input artificial neural network model, and it requires only two-time numerical simulation (or Monte Carlo simulation) at most, which is used in the training of the nonlinear autoregressive with exogenous input artificial neural network model.</description><issn>1369-4332</issn><issn>2048-4011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAYhIMouK7ePeYPRPMmaZMcZfELBD3ouSTp25J1t1mSVvHf23U9CZ7mMM8MwxByCfwKQOtrkLVVUgqwRlnD7RFZCK4MUxzgmCz2Ntv7p-SslDXnILSGBQkvGdsYxpiGQlNHPzCPMbgNHbOLA_M5tj3SjGU3A0inEoeeupnpYogzNuCUf2T8TPmdeVewpWXKOfVuRLpNLW7OyUnnNgUvfnVJ3u5uX1cP7On5_nF188SCMDAyE2zXVtBVAqXjlZdGOStqbXhVO6GCg9ZUUGsIBrn3ildogpOWa--t5kIuCT_0hpxKydg1uxy3Ln81wJv9Sc3fk-YIO0SK67FZpykP88L_-W-Rh2he</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Han, Xu</creator><creator>Xiang, Huoyue</creator><creator>Li, Yongle</creator><creator>Wang, Yichao</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6612-6181</orcidid></search><sort><creationdate>201909</creationdate><title>Predictions of vertical train-bridge response using artificial neural network-based surrogate model</title><author>Han, Xu ; Xiang, Huoyue ; Li, Yongle ; Wang, Yichao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-8c9fd51f52e3a05b384a92678056a24ca1d851671c8e0bb405e8ca3907bb97023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Xu</creatorcontrib><creatorcontrib>Xiang, Huoyue</creatorcontrib><creatorcontrib>Li, Yongle</creatorcontrib><creatorcontrib>Wang, Yichao</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in structural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Xu</au><au>Xiang, Huoyue</au><au>Li, Yongle</au><au>Wang, Yichao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictions of vertical train-bridge response using artificial neural network-based surrogate model</atitle><jtitle>Advances in structural engineering</jtitle><date>2019-09</date><risdate>2019</risdate><volume>22</volume><issue>12</issue><spage>2712</spage><epage>2723</epage><pages>2712-2723</pages><issn>1369-4332</issn><eissn>2048-4011</eissn><abstract>To improve the efficiency of reliability calculations for vehicle-bridge systems, we present a surrogate modeling method based on a nonlinear autoregressive with exogenous input artificial neural network model and an important sample, which can forecast responses of dynamic systems, such as vehicle-bridge systems, subjected to stochastic excitations. We also propose a process to analyze the method. A quarter-vehicle model is used to verify the proposed method’s precision, and the nonlinear autoregressive with exogenous input artificial neural network model is used to predict responses of vertical vehicle-bridge systems. The results show that, compared to other training samples, the nonlinear autoregressive with exogenous input artificial neural network model has better prediction accuracy when the sample with the maximum response is considered as an important sample and is used to train the nonlinear autoregressive with exogenous input artificial neural network model, and it requires only two-time numerical simulation (or Monte Carlo simulation) at most, which is used in the training of the nonlinear autoregressive with exogenous input artificial neural network model.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1369433219849809</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6612-6181</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-4332 |
ispartof | Advances in structural engineering, 2019-09, Vol.22 (12), p.2712-2723 |
issn | 1369-4332 2048-4011 |
language | eng |
recordid | cdi_crossref_primary_10_1177_1369433219849809 |
source | SAGE Complete A-Z List |
title | Predictions of vertical train-bridge response using artificial neural network-based surrogate model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictions%20of%20vertical%20train-bridge%20response%20using%20artificial%20neural%20network-based%20surrogate%20model&rft.jtitle=Advances%20in%20structural%20engineering&rft.au=Han,%20Xu&rft.date=2019-09&rft.volume=22&rft.issue=12&rft.spage=2712&rft.epage=2723&rft.pages=2712-2723&rft.issn=1369-4332&rft.eissn=2048-4011&rft_id=info:doi/10.1177/1369433219849809&rft_dat=%3Csage_cross%3E10.1177_1369433219849809%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1369433219849809&rfr_iscdi=true |