Predictions of vertical train-bridge response using artificial neural network-based surrogate model

To improve the efficiency of reliability calculations for vehicle-bridge systems, we present a surrogate modeling method based on a nonlinear autoregressive with exogenous input artificial neural network model and an important sample, which can forecast responses of dynamic systems, such as vehicle-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in structural engineering 2019-09, Vol.22 (12), p.2712-2723
Hauptverfasser: Han, Xu, Xiang, Huoyue, Li, Yongle, Wang, Yichao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2723
container_issue 12
container_start_page 2712
container_title Advances in structural engineering
container_volume 22
creator Han, Xu
Xiang, Huoyue
Li, Yongle
Wang, Yichao
description To improve the efficiency of reliability calculations for vehicle-bridge systems, we present a surrogate modeling method based on a nonlinear autoregressive with exogenous input artificial neural network model and an important sample, which can forecast responses of dynamic systems, such as vehicle-bridge systems, subjected to stochastic excitations. We also propose a process to analyze the method. A quarter-vehicle model is used to verify the proposed method’s precision, and the nonlinear autoregressive with exogenous input artificial neural network model is used to predict responses of vertical vehicle-bridge systems. The results show that, compared to other training samples, the nonlinear autoregressive with exogenous input artificial neural network model has better prediction accuracy when the sample with the maximum response is considered as an important sample and is used to train the nonlinear autoregressive with exogenous input artificial neural network model, and it requires only two-time numerical simulation (or Monte Carlo simulation) at most, which is used in the training of the nonlinear autoregressive with exogenous input artificial neural network model.
doi_str_mv 10.1177/1369433219849809
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1369433219849809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1369433219849809</sage_id><sourcerecordid>10.1177_1369433219849809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-8c9fd51f52e3a05b384a92678056a24ca1d851671c8e0bb405e8ca3907bb97023</originalsourceid><addsrcrecordid>eNp1kE1LxDAYhIMouK7ePeYPRPMmaZMcZfELBD3ouSTp25J1t1mSVvHf23U9CZ7mMM8MwxByCfwKQOtrkLVVUgqwRlnD7RFZCK4MUxzgmCz2Ntv7p-SslDXnILSGBQkvGdsYxpiGQlNHPzCPMbgNHbOLA_M5tj3SjGU3A0inEoeeupnpYogzNuCUf2T8TPmdeVewpWXKOfVuRLpNLW7OyUnnNgUvfnVJ3u5uX1cP7On5_nF188SCMDAyE2zXVtBVAqXjlZdGOStqbXhVO6GCg9ZUUGsIBrn3ildogpOWa--t5kIuCT_0hpxKydg1uxy3Ln81wJv9Sc3fk-YIO0SK67FZpykP88L_-W-Rh2he</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predictions of vertical train-bridge response using artificial neural network-based surrogate model</title><source>SAGE Complete A-Z List</source><creator>Han, Xu ; Xiang, Huoyue ; Li, Yongle ; Wang, Yichao</creator><creatorcontrib>Han, Xu ; Xiang, Huoyue ; Li, Yongle ; Wang, Yichao</creatorcontrib><description>To improve the efficiency of reliability calculations for vehicle-bridge systems, we present a surrogate modeling method based on a nonlinear autoregressive with exogenous input artificial neural network model and an important sample, which can forecast responses of dynamic systems, such as vehicle-bridge systems, subjected to stochastic excitations. We also propose a process to analyze the method. A quarter-vehicle model is used to verify the proposed method’s precision, and the nonlinear autoregressive with exogenous input artificial neural network model is used to predict responses of vertical vehicle-bridge systems. The results show that, compared to other training samples, the nonlinear autoregressive with exogenous input artificial neural network model has better prediction accuracy when the sample with the maximum response is considered as an important sample and is used to train the nonlinear autoregressive with exogenous input artificial neural network model, and it requires only two-time numerical simulation (or Monte Carlo simulation) at most, which is used in the training of the nonlinear autoregressive with exogenous input artificial neural network model.</description><identifier>ISSN: 1369-4332</identifier><identifier>EISSN: 2048-4011</identifier><identifier>DOI: 10.1177/1369433219849809</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Advances in structural engineering, 2019-09, Vol.22 (12), p.2712-2723</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-8c9fd51f52e3a05b384a92678056a24ca1d851671c8e0bb405e8ca3907bb97023</citedby><cites>FETCH-LOGICAL-c281t-8c9fd51f52e3a05b384a92678056a24ca1d851671c8e0bb405e8ca3907bb97023</cites><orcidid>0000-0001-6612-6181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1369433219849809$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1369433219849809$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21817,27922,27923,43619,43620</link.rule.ids></links><search><creatorcontrib>Han, Xu</creatorcontrib><creatorcontrib>Xiang, Huoyue</creatorcontrib><creatorcontrib>Li, Yongle</creatorcontrib><creatorcontrib>Wang, Yichao</creatorcontrib><title>Predictions of vertical train-bridge response using artificial neural network-based surrogate model</title><title>Advances in structural engineering</title><description>To improve the efficiency of reliability calculations for vehicle-bridge systems, we present a surrogate modeling method based on a nonlinear autoregressive with exogenous input artificial neural network model and an important sample, which can forecast responses of dynamic systems, such as vehicle-bridge systems, subjected to stochastic excitations. We also propose a process to analyze the method. A quarter-vehicle model is used to verify the proposed method’s precision, and the nonlinear autoregressive with exogenous input artificial neural network model is used to predict responses of vertical vehicle-bridge systems. The results show that, compared to other training samples, the nonlinear autoregressive with exogenous input artificial neural network model has better prediction accuracy when the sample with the maximum response is considered as an important sample and is used to train the nonlinear autoregressive with exogenous input artificial neural network model, and it requires only two-time numerical simulation (or Monte Carlo simulation) at most, which is used in the training of the nonlinear autoregressive with exogenous input artificial neural network model.</description><issn>1369-4332</issn><issn>2048-4011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAYhIMouK7ePeYPRPMmaZMcZfELBD3ouSTp25J1t1mSVvHf23U9CZ7mMM8MwxByCfwKQOtrkLVVUgqwRlnD7RFZCK4MUxzgmCz2Ntv7p-SslDXnILSGBQkvGdsYxpiGQlNHPzCPMbgNHbOLA_M5tj3SjGU3A0inEoeeupnpYogzNuCUf2T8TPmdeVewpWXKOfVuRLpNLW7OyUnnNgUvfnVJ3u5uX1cP7On5_nF188SCMDAyE2zXVtBVAqXjlZdGOStqbXhVO6GCg9ZUUGsIBrn3ildogpOWa--t5kIuCT_0hpxKydg1uxy3Ln81wJv9Sc3fk-YIO0SK67FZpykP88L_-W-Rh2he</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Han, Xu</creator><creator>Xiang, Huoyue</creator><creator>Li, Yongle</creator><creator>Wang, Yichao</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6612-6181</orcidid></search><sort><creationdate>201909</creationdate><title>Predictions of vertical train-bridge response using artificial neural network-based surrogate model</title><author>Han, Xu ; Xiang, Huoyue ; Li, Yongle ; Wang, Yichao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-8c9fd51f52e3a05b384a92678056a24ca1d851671c8e0bb405e8ca3907bb97023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Xu</creatorcontrib><creatorcontrib>Xiang, Huoyue</creatorcontrib><creatorcontrib>Li, Yongle</creatorcontrib><creatorcontrib>Wang, Yichao</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in structural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Xu</au><au>Xiang, Huoyue</au><au>Li, Yongle</au><au>Wang, Yichao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictions of vertical train-bridge response using artificial neural network-based surrogate model</atitle><jtitle>Advances in structural engineering</jtitle><date>2019-09</date><risdate>2019</risdate><volume>22</volume><issue>12</issue><spage>2712</spage><epage>2723</epage><pages>2712-2723</pages><issn>1369-4332</issn><eissn>2048-4011</eissn><abstract>To improve the efficiency of reliability calculations for vehicle-bridge systems, we present a surrogate modeling method based on a nonlinear autoregressive with exogenous input artificial neural network model and an important sample, which can forecast responses of dynamic systems, such as vehicle-bridge systems, subjected to stochastic excitations. We also propose a process to analyze the method. A quarter-vehicle model is used to verify the proposed method’s precision, and the nonlinear autoregressive with exogenous input artificial neural network model is used to predict responses of vertical vehicle-bridge systems. The results show that, compared to other training samples, the nonlinear autoregressive with exogenous input artificial neural network model has better prediction accuracy when the sample with the maximum response is considered as an important sample and is used to train the nonlinear autoregressive with exogenous input artificial neural network model, and it requires only two-time numerical simulation (or Monte Carlo simulation) at most, which is used in the training of the nonlinear autoregressive with exogenous input artificial neural network model.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1369433219849809</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6612-6181</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1369-4332
ispartof Advances in structural engineering, 2019-09, Vol.22 (12), p.2712-2723
issn 1369-4332
2048-4011
language eng
recordid cdi_crossref_primary_10_1177_1369433219849809
source SAGE Complete A-Z List
title Predictions of vertical train-bridge response using artificial neural network-based surrogate model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictions%20of%20vertical%20train-bridge%20response%20using%20artificial%20neural%20network-based%20surrogate%20model&rft.jtitle=Advances%20in%20structural%20engineering&rft.au=Han,%20Xu&rft.date=2019-09&rft.volume=22&rft.issue=12&rft.spage=2712&rft.epage=2723&rft.pages=2712-2723&rft.issn=1369-4332&rft.eissn=2048-4011&rft_id=info:doi/10.1177/1369433219849809&rft_dat=%3Csage_cross%3E10.1177_1369433219849809%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1369433219849809&rfr_iscdi=true