Optimizing an auxetic metamaterial structure for enhanced mechanical energy absorption: Design and performance evaluation under compressive and impact loading
Auxetic metamaterials, characterized by their negative Poisson’s ratio, offer promising prospects for utilization in absorbing energy during quasi-static compressive loading as well as in applications requiring impact energy absorption. The optimization of auxetic structures’ geometrical parameters...
Gespeichert in:
Veröffentlicht in: | The journal of sandwich structures & materials 2024-10, Vol.26 (7), p.1129-1164 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1164 |
---|---|
container_issue | 7 |
container_start_page | 1129 |
container_title | The journal of sandwich structures & materials |
container_volume | 26 |
creator | Nickabadi, Saeid Sayar, Majid Askari Alirezaeipour, Saeid Ansari, Reza |
description | Auxetic metamaterials, characterized by their negative Poisson’s ratio, offer promising prospects for utilization in absorbing energy during quasi-static compressive loading as well as in applications requiring impact energy absorption. The optimization of auxetic structures’ geometrical parameters can improve their performance. This research aims to optimize the design of an auxetic structure for maximum specific energy absorption and investigate its behavior under quasi-static compressive and high-velocity impact loading. The geometrical parameters of the cross-petal auxetic structure are optimized using genetic algorithm and a neural network surrogate model. The behavior of the optimized auxetic structure is examined in quasi-static compressive loading and compared with that of the basic auxetic structure using finite element simulations. The optimized auxetic structure is then evaluated in high-velocity impact loading as the core of a sandwich panel, with two plates placed in the front and rear. Simulations of projectile impacts at velocities ranging from 100 to 250 m/s reveal the sandwich panel’s behavior. Results indicate a 69.82% increase in specific energy absorption capacity for the optimized auxetic structure as compared to the basic structure in quasi-static compressive loading. In high-velocity impact, the sandwich panel with the optimal auxetic core outperforms the one with the basic core. At velocities more than the minimum perforation velocity, the core contributes about 64%–67% of the total absorbed energy by the sandwich panel. |
doi_str_mv | 10.1177/10996362241275473 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_10996362241275473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10996362241275473</sage_id><sourcerecordid>10.1177_10996362241275473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c166t-a629a2f4a34ad77ddcccb8a4233b140ba3022218b6f952dbf89eb5e0ec898e0b3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAez8Ayl-5cUOladUqRtYRxNnElwlTmQnFeVj-FYcyg6J1Yw051yNLiHXnK04T9MbzvI8kYkQios0Vqk8IQseSxaleSpOwx7u0Qyckwvvd4wJrlSyIF_bYTSd-TS2oWApTB84Gk07HKGDEZ2BlvrRTXqcHNK6dxTtO1iNVWB02IwOBFp0zYFC6XsX8np7S-_RmyYE2ooO6ILYzRbFPbQTzAidbIWO6r4bHHpv9vgDm24APdK2hyr8dEnOamg9Xv3OJXl7fHhdP0eb7dPL-m4TaZ4kYwSJyEHUCqSCKk2rSmtdZqCElCVXrATJhBA8K5M6j0VV1lmOZYwMdZZnyEq5JPyYq13vvcO6GJzpwB0Kzoq54OJPwcFZHR0PDRa7fnI2vPiP8A2pYYC3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimizing an auxetic metamaterial structure for enhanced mechanical energy absorption: Design and performance evaluation under compressive and impact loading</title><source>SAGE Complete</source><creator>Nickabadi, Saeid ; Sayar, Majid Askari ; Alirezaeipour, Saeid ; Ansari, Reza</creator><creatorcontrib>Nickabadi, Saeid ; Sayar, Majid Askari ; Alirezaeipour, Saeid ; Ansari, Reza</creatorcontrib><description>Auxetic metamaterials, characterized by their negative Poisson’s ratio, offer promising prospects for utilization in absorbing energy during quasi-static compressive loading as well as in applications requiring impact energy absorption. The optimization of auxetic structures’ geometrical parameters can improve their performance. This research aims to optimize the design of an auxetic structure for maximum specific energy absorption and investigate its behavior under quasi-static compressive and high-velocity impact loading. The geometrical parameters of the cross-petal auxetic structure are optimized using genetic algorithm and a neural network surrogate model. The behavior of the optimized auxetic structure is examined in quasi-static compressive loading and compared with that of the basic auxetic structure using finite element simulations. The optimized auxetic structure is then evaluated in high-velocity impact loading as the core of a sandwich panel, with two plates placed in the front and rear. Simulations of projectile impacts at velocities ranging from 100 to 250 m/s reveal the sandwich panel’s behavior. Results indicate a 69.82% increase in specific energy absorption capacity for the optimized auxetic structure as compared to the basic structure in quasi-static compressive loading. In high-velocity impact, the sandwich panel with the optimal auxetic core outperforms the one with the basic core. At velocities more than the minimum perforation velocity, the core contributes about 64%–67% of the total absorbed energy by the sandwich panel.</description><identifier>ISSN: 1099-6362</identifier><identifier>EISSN: 1530-7972</identifier><identifier>DOI: 10.1177/10996362241275473</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>The journal of sandwich structures & materials, 2024-10, Vol.26 (7), p.1129-1164</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c166t-a629a2f4a34ad77ddcccb8a4233b140ba3022218b6f952dbf89eb5e0ec898e0b3</cites><orcidid>0009-0001-6623-5406 ; 0000-0002-6810-6624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/10996362241275473$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/10996362241275473$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,778,782,21802,27907,27908,43604,43605</link.rule.ids></links><search><creatorcontrib>Nickabadi, Saeid</creatorcontrib><creatorcontrib>Sayar, Majid Askari</creatorcontrib><creatorcontrib>Alirezaeipour, Saeid</creatorcontrib><creatorcontrib>Ansari, Reza</creatorcontrib><title>Optimizing an auxetic metamaterial structure for enhanced mechanical energy absorption: Design and performance evaluation under compressive and impact loading</title><title>The journal of sandwich structures & materials</title><description>Auxetic metamaterials, characterized by their negative Poisson’s ratio, offer promising prospects for utilization in absorbing energy during quasi-static compressive loading as well as in applications requiring impact energy absorption. The optimization of auxetic structures’ geometrical parameters can improve their performance. This research aims to optimize the design of an auxetic structure for maximum specific energy absorption and investigate its behavior under quasi-static compressive and high-velocity impact loading. The geometrical parameters of the cross-petal auxetic structure are optimized using genetic algorithm and a neural network surrogate model. The behavior of the optimized auxetic structure is examined in quasi-static compressive loading and compared with that of the basic auxetic structure using finite element simulations. The optimized auxetic structure is then evaluated in high-velocity impact loading as the core of a sandwich panel, with two plates placed in the front and rear. Simulations of projectile impacts at velocities ranging from 100 to 250 m/s reveal the sandwich panel’s behavior. Results indicate a 69.82% increase in specific energy absorption capacity for the optimized auxetic structure as compared to the basic structure in quasi-static compressive loading. In high-velocity impact, the sandwich panel with the optimal auxetic core outperforms the one with the basic core. At velocities more than the minimum perforation velocity, the core contributes about 64%–67% of the total absorbed energy by the sandwich panel.</description><issn>1099-6362</issn><issn>1530-7972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAez8Ayl-5cUOladUqRtYRxNnElwlTmQnFeVj-FYcyg6J1Yw051yNLiHXnK04T9MbzvI8kYkQios0Vqk8IQseSxaleSpOwx7u0Qyckwvvd4wJrlSyIF_bYTSd-TS2oWApTB84Gk07HKGDEZ2BlvrRTXqcHNK6dxTtO1iNVWB02IwOBFp0zYFC6XsX8np7S-_RmyYE2ooO6ILYzRbFPbQTzAidbIWO6r4bHHpv9vgDm24APdK2hyr8dEnOamg9Xv3OJXl7fHhdP0eb7dPL-m4TaZ4kYwSJyEHUCqSCKk2rSmtdZqCElCVXrATJhBA8K5M6j0VV1lmOZYwMdZZnyEq5JPyYq13vvcO6GJzpwB0Kzoq54OJPwcFZHR0PDRa7fnI2vPiP8A2pYYC3</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Nickabadi, Saeid</creator><creator>Sayar, Majid Askari</creator><creator>Alirezaeipour, Saeid</creator><creator>Ansari, Reza</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0001-6623-5406</orcidid><orcidid>https://orcid.org/0000-0002-6810-6624</orcidid></search><sort><creationdate>202410</creationdate><title>Optimizing an auxetic metamaterial structure for enhanced mechanical energy absorption: Design and performance evaluation under compressive and impact loading</title><author>Nickabadi, Saeid ; Sayar, Majid Askari ; Alirezaeipour, Saeid ; Ansari, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c166t-a629a2f4a34ad77ddcccb8a4233b140ba3022218b6f952dbf89eb5e0ec898e0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nickabadi, Saeid</creatorcontrib><creatorcontrib>Sayar, Majid Askari</creatorcontrib><creatorcontrib>Alirezaeipour, Saeid</creatorcontrib><creatorcontrib>Ansari, Reza</creatorcontrib><collection>CrossRef</collection><jtitle>The journal of sandwich structures & materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nickabadi, Saeid</au><au>Sayar, Majid Askari</au><au>Alirezaeipour, Saeid</au><au>Ansari, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing an auxetic metamaterial structure for enhanced mechanical energy absorption: Design and performance evaluation under compressive and impact loading</atitle><jtitle>The journal of sandwich structures & materials</jtitle><date>2024-10</date><risdate>2024</risdate><volume>26</volume><issue>7</issue><spage>1129</spage><epage>1164</epage><pages>1129-1164</pages><issn>1099-6362</issn><eissn>1530-7972</eissn><abstract>Auxetic metamaterials, characterized by their negative Poisson’s ratio, offer promising prospects for utilization in absorbing energy during quasi-static compressive loading as well as in applications requiring impact energy absorption. The optimization of auxetic structures’ geometrical parameters can improve their performance. This research aims to optimize the design of an auxetic structure for maximum specific energy absorption and investigate its behavior under quasi-static compressive and high-velocity impact loading. The geometrical parameters of the cross-petal auxetic structure are optimized using genetic algorithm and a neural network surrogate model. The behavior of the optimized auxetic structure is examined in quasi-static compressive loading and compared with that of the basic auxetic structure using finite element simulations. The optimized auxetic structure is then evaluated in high-velocity impact loading as the core of a sandwich panel, with two plates placed in the front and rear. Simulations of projectile impacts at velocities ranging from 100 to 250 m/s reveal the sandwich panel’s behavior. Results indicate a 69.82% increase in specific energy absorption capacity for the optimized auxetic structure as compared to the basic structure in quasi-static compressive loading. In high-velocity impact, the sandwich panel with the optimal auxetic core outperforms the one with the basic core. At velocities more than the minimum perforation velocity, the core contributes about 64%–67% of the total absorbed energy by the sandwich panel.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/10996362241275473</doi><tpages>36</tpages><orcidid>https://orcid.org/0009-0001-6623-5406</orcidid><orcidid>https://orcid.org/0000-0002-6810-6624</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-6362 |
ispartof | The journal of sandwich structures & materials, 2024-10, Vol.26 (7), p.1129-1164 |
issn | 1099-6362 1530-7972 |
language | eng |
recordid | cdi_crossref_primary_10_1177_10996362241275473 |
source | SAGE Complete |
title | Optimizing an auxetic metamaterial structure for enhanced mechanical energy absorption: Design and performance evaluation under compressive and impact loading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20an%20auxetic%20metamaterial%20structure%20for%20enhanced%20mechanical%20energy%20absorption:%20Design%20and%20performance%20evaluation%20under%20compressive%20and%20impact%20loading&rft.jtitle=The%20journal%20of%20sandwich%20structures%20&%20materials&rft.au=Nickabadi,%20Saeid&rft.date=2024-10&rft.volume=26&rft.issue=7&rft.spage=1129&rft.epage=1164&rft.pages=1129-1164&rft.issn=1099-6362&rft.eissn=1530-7972&rft_id=info:doi/10.1177/10996362241275473&rft_dat=%3Csage_cross%3E10.1177_10996362241275473%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_10996362241275473&rfr_iscdi=true |