Improved Statistical Methods for Hit Selection in High-Throughput Screening

High-throughput screening (HTS) plays a central role in modern drug discovery, allowing the rapid screening of large compound collections against a variety of putative drug targets. HTS is an industrial-scale process, relying on sophisticated auto mation, control, and state-of-the art detection tech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomolecular screening 2003-12, Vol.8 (6), p.634-647
Hauptverfasser: Brideau, Christine, Gunter, Bert, Pikounis, Bill, Liaw, Andy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 647
container_issue 6
container_start_page 634
container_title Journal of biomolecular screening
container_volume 8
creator Brideau, Christine
Gunter, Bert
Pikounis, Bill
Liaw, Andy
description High-throughput screening (HTS) plays a central role in modern drug discovery, allowing the rapid screening of large compound collections against a variety of putative drug targets. HTS is an industrial-scale process, relying on sophisticated auto mation, control, and state-of-the art detection technologies to organize, test, and measure hundreds of thousands to millions of compounds in nano-to microliter volumes. Despite this high technology, hit selection for HTS is still typically done using simple data analysis and basic statistical methods. The authors discuss in this article some shortcomings of these methods and present alternatives based on modern methods of statistical data analysis. Most important, they describe and show numerous real examples from the biologist-friendly Stat Server® HTS application (SHS), a custom-developed software tool built on the commercially available S-PLUS® and StatServer® statistical analysis and server software. This system remotely processes HTS data using powerful and sophisticated statistical methodology but insulates users from the technical details by outputting results in a variety of readily interpretable graphs and tables.
doi_str_mv 10.1177/1087057103258285
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1087057103258285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1087057103258285</sage_id><sourcerecordid>21200729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-9b13d802375aef3f33e5685fb95fa489213a7b0a2a890abf83fd02210805d7a03</originalsourceid><addsrcrecordid>eNqFkMFLwzAUxoMobk7vnqQnb9WXpFmSowx1Q8XDJngraZu0HV0zk1TwvzdjA0EQT-_xvt_7eO9D6BLDDcac32IQHBjHQAkTRLAjNMaMkTRj2ftx7KOc7vQROvN-DYDpFLJTNMIZx5gKOUZPi83W2U9dJcugQutDW6ouedGhsZVPjHXJvA3JUne6DK3tk7aPg7pJV42zQ91shyiWTuu-7etzdGJU5_XFoU7Q28P9ajZPn18fF7O757TMOAmpLDCtBBDKmdKGGko1mwpmCsmMyoQkmCpegCJKSFCFEdRUQEh8BljFFdAJut77xss_Bu1Dvml9qbtO9doOPueYUQly-i9IMAHgREYQ9mDprPdOm3zr2o1yXzmGfJd0_jvpuHJ18B6Kja5-Fg7RRiDdA17VOl_bwfUxlL8NvwEMt4SU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21200729</pqid></control><display><type>article</type><title>Improved Statistical Methods for Hit Selection in High-Throughput Screening</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Brideau, Christine ; Gunter, Bert ; Pikounis, Bill ; Liaw, Andy</creator><creatorcontrib>Brideau, Christine ; Gunter, Bert ; Pikounis, Bill ; Liaw, Andy</creatorcontrib><description>High-throughput screening (HTS) plays a central role in modern drug discovery, allowing the rapid screening of large compound collections against a variety of putative drug targets. HTS is an industrial-scale process, relying on sophisticated auto mation, control, and state-of-the art detection technologies to organize, test, and measure hundreds of thousands to millions of compounds in nano-to microliter volumes. Despite this high technology, hit selection for HTS is still typically done using simple data analysis and basic statistical methods. The authors discuss in this article some shortcomings of these methods and present alternatives based on modern methods of statistical data analysis. Most important, they describe and show numerous real examples from the biologist-friendly Stat Server® HTS application (SHS), a custom-developed software tool built on the commercially available S-PLUS® and StatServer® statistical analysis and server software. This system remotely processes HTS data using powerful and sophisticated statistical methodology but insulates users from the technical details by outputting results in a variety of readily interpretable graphs and tables.</description><identifier>ISSN: 1087-0571</identifier><identifier>ISSN: 2472-5552</identifier><identifier>EISSN: 1552-454X</identifier><identifier>DOI: 10.1177/1087057103258285</identifier><identifier>PMID: 14711389</identifier><language>eng</language><publisher>United States: SAGE Publications</publisher><subject>Algorithms ; Drug Evaluation, Preclinical - methods ; Reference Standards ; Statistics as Topic - methods ; Temperature</subject><ispartof>Journal of biomolecular screening, 2003-12, Vol.8 (6), p.634-647</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-9b13d802375aef3f33e5685fb95fa489213a7b0a2a890abf83fd02210805d7a03</citedby><cites>FETCH-LOGICAL-c472t-9b13d802375aef3f33e5685fb95fa489213a7b0a2a890abf83fd02210805d7a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14711389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brideau, Christine</creatorcontrib><creatorcontrib>Gunter, Bert</creatorcontrib><creatorcontrib>Pikounis, Bill</creatorcontrib><creatorcontrib>Liaw, Andy</creatorcontrib><title>Improved Statistical Methods for Hit Selection in High-Throughput Screening</title><title>Journal of biomolecular screening</title><addtitle>J Biomol Screen</addtitle><description>High-throughput screening (HTS) plays a central role in modern drug discovery, allowing the rapid screening of large compound collections against a variety of putative drug targets. HTS is an industrial-scale process, relying on sophisticated auto mation, control, and state-of-the art detection technologies to organize, test, and measure hundreds of thousands to millions of compounds in nano-to microliter volumes. Despite this high technology, hit selection for HTS is still typically done using simple data analysis and basic statistical methods. The authors discuss in this article some shortcomings of these methods and present alternatives based on modern methods of statistical data analysis. Most important, they describe and show numerous real examples from the biologist-friendly Stat Server® HTS application (SHS), a custom-developed software tool built on the commercially available S-PLUS® and StatServer® statistical analysis and server software. This system remotely processes HTS data using powerful and sophisticated statistical methodology but insulates users from the technical details by outputting results in a variety of readily interpretable graphs and tables.</description><subject>Algorithms</subject><subject>Drug Evaluation, Preclinical - methods</subject><subject>Reference Standards</subject><subject>Statistics as Topic - methods</subject><subject>Temperature</subject><issn>1087-0571</issn><issn>2472-5552</issn><issn>1552-454X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFLwzAUxoMobk7vnqQnb9WXpFmSowx1Q8XDJngraZu0HV0zk1TwvzdjA0EQT-_xvt_7eO9D6BLDDcac32IQHBjHQAkTRLAjNMaMkTRj2ftx7KOc7vQROvN-DYDpFLJTNMIZx5gKOUZPi83W2U9dJcugQutDW6ouedGhsZVPjHXJvA3JUne6DK3tk7aPg7pJV42zQ91shyiWTuu-7etzdGJU5_XFoU7Q28P9ajZPn18fF7O757TMOAmpLDCtBBDKmdKGGko1mwpmCsmMyoQkmCpegCJKSFCFEdRUQEh8BljFFdAJut77xss_Bu1Dvml9qbtO9doOPueYUQly-i9IMAHgREYQ9mDprPdOm3zr2o1yXzmGfJd0_jvpuHJ18B6Kja5-Fg7RRiDdA17VOl_bwfUxlL8NvwEMt4SU</recordid><startdate>200312</startdate><enddate>200312</enddate><creator>Brideau, Christine</creator><creator>Gunter, Bert</creator><creator>Pikounis, Bill</creator><creator>Liaw, Andy</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200312</creationdate><title>Improved Statistical Methods for Hit Selection in High-Throughput Screening</title><author>Brideau, Christine ; Gunter, Bert ; Pikounis, Bill ; Liaw, Andy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-9b13d802375aef3f33e5685fb95fa489213a7b0a2a890abf83fd02210805d7a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Drug Evaluation, Preclinical - methods</topic><topic>Reference Standards</topic><topic>Statistics as Topic - methods</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brideau, Christine</creatorcontrib><creatorcontrib>Gunter, Bert</creatorcontrib><creatorcontrib>Pikounis, Bill</creatorcontrib><creatorcontrib>Liaw, Andy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomolecular screening</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brideau, Christine</au><au>Gunter, Bert</au><au>Pikounis, Bill</au><au>Liaw, Andy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Statistical Methods for Hit Selection in High-Throughput Screening</atitle><jtitle>Journal of biomolecular screening</jtitle><addtitle>J Biomol Screen</addtitle><date>2003-12</date><risdate>2003</risdate><volume>8</volume><issue>6</issue><spage>634</spage><epage>647</epage><pages>634-647</pages><issn>1087-0571</issn><issn>2472-5552</issn><eissn>1552-454X</eissn><abstract>High-throughput screening (HTS) plays a central role in modern drug discovery, allowing the rapid screening of large compound collections against a variety of putative drug targets. HTS is an industrial-scale process, relying on sophisticated auto mation, control, and state-of-the art detection technologies to organize, test, and measure hundreds of thousands to millions of compounds in nano-to microliter volumes. Despite this high technology, hit selection for HTS is still typically done using simple data analysis and basic statistical methods. The authors discuss in this article some shortcomings of these methods and present alternatives based on modern methods of statistical data analysis. Most important, they describe and show numerous real examples from the biologist-friendly Stat Server® HTS application (SHS), a custom-developed software tool built on the commercially available S-PLUS® and StatServer® statistical analysis and server software. This system remotely processes HTS data using powerful and sophisticated statistical methodology but insulates users from the technical details by outputting results in a variety of readily interpretable graphs and tables.</abstract><cop>United States</cop><pub>SAGE Publications</pub><pmid>14711389</pmid><doi>10.1177/1087057103258285</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0571
ispartof Journal of biomolecular screening, 2003-12, Vol.8 (6), p.634-647
issn 1087-0571
2472-5552
1552-454X
language eng
recordid cdi_crossref_primary_10_1177_1087057103258285
source MEDLINE; Alma/SFX Local Collection
subjects Algorithms
Drug Evaluation, Preclinical - methods
Reference Standards
Statistics as Topic - methods
Temperature
title Improved Statistical Methods for Hit Selection in High-Throughput Screening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T16%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Statistical%20Methods%20for%20Hit%20Selection%20in%20High-Throughput%20Screening&rft.jtitle=Journal%20of%20biomolecular%20screening&rft.au=Brideau,%20Christine&rft.date=2003-12&rft.volume=8&rft.issue=6&rft.spage=634&rft.epage=647&rft.pages=634-647&rft.issn=1087-0571&rft.eissn=1552-454X&rft_id=info:doi/10.1177/1087057103258285&rft_dat=%3Cproquest_cross%3E21200729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21200729&rft_id=info:pmid/14711389&rft_sage_id=10.1177_1087057103258285&rfr_iscdi=true