Statistical and Graphical Methods for Quality Control Determination of High-Throughput Screening Data
High-throughput screening (HTS) is used in modern drug discovery to screen hundreds of thousands to millions of compounds on selected protein targets. It is an industrial-scale process relying on sophisticated automation and state-of-the-art detection technologies. Quality control (QC) is an integra...
Gespeichert in:
Veröffentlicht in: | Journal of biomolecular screening 2003-12, Vol.8 (6), p.624-633 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 633 |
---|---|
container_issue | 6 |
container_start_page | 624 |
container_title | Journal of biomolecular screening |
container_volume | 8 |
creator | Gunter, Bert Brideau, Christine Pikounis, Bill Liaw, Andy |
description | High-throughput screening (HTS) is used in modern drug discovery to screen hundreds of thousands to millions of compounds on selected protein targets. It is an industrial-scale process relying on sophisticated automation and state-of-the-art detection technologies. Quality control (QC) is an integral part of the process and is used to ensure good quality data and mini mize assay variability while maintaining assay sensitivity. The authors describe new QC methods and show numerous real examples from their biologist-friendly Stat Server® HTS application, a custom-developed software tool built from the commercially available S-PLUS® and Stat Server® statistical analysis and server software. This system remotely processes HTS data using powerful and sophisticated statistical methodology but insulates users from the technical details by outputting results in a variety of readily interpretable graphs and tables. It allows users to visualize HTS data and examine assay performance during the HTS campaign to quickly react to or avoid quality problems. |
doi_str_mv | 10.1177/1087057103258284 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1087057103258284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1087057103258284</sage_id><sourcerecordid>71501371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-abb2a038e34df6cedb0dc27755377978efac2e69e5336db3462b0341be60707e3</originalsourceid><addsrcrecordid>eNqFkc1Lw0AQxRdRbK3ePcmevEX3M7s9SqutUBFpBW9hk0w-Spqtu5tD_3tTWxAE8TQzvN97hzcIXVNyR6lS95RoRaSihDOpmRYnaEilZJGQ4uO033s52usDdOH9mhDKYyLO0YAKRSnXeohgGUyofagz02DT5njmzLb6vl4gVDb3uLAOv3WmqcMOT2wbnG3wFAK4Td32XttiW-B5XVbRqnK2K6ttF_AycwBt3ZZ4aoK5RGeFaTxcHecIvT89ribzaPE6e548LKJMkDhEJk2ZIVwDF3kRZ5CnJM-YUlJypcZKQ2EyBvEYJOdxnnIRs5RwQVOIiSIK-AjdHnK3zn524EOyqX0GTWNasJ1PFJV9B4r-CzLKSEy17kFyADNnvXdQJFtXb4zbJZQk-x8kv3_QW26O2V26gfzHcCy9B6ID4E0Jydp2ru1L-TvwC4MVjtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21206188</pqid></control><display><type>article</type><title>Statistical and Graphical Methods for Quality Control Determination of High-Throughput Screening Data</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Gunter, Bert ; Brideau, Christine ; Pikounis, Bill ; Liaw, Andy</creator><creatorcontrib>Gunter, Bert ; Brideau, Christine ; Pikounis, Bill ; Liaw, Andy</creatorcontrib><description>High-throughput screening (HTS) is used in modern drug discovery to screen hundreds of thousands to millions of compounds on selected protein targets. It is an industrial-scale process relying on sophisticated automation and state-of-the-art detection technologies. Quality control (QC) is an integral part of the process and is used to ensure good quality data and mini mize assay variability while maintaining assay sensitivity. The authors describe new QC methods and show numerous real examples from their biologist-friendly Stat Server® HTS application, a custom-developed software tool built from the commercially available S-PLUS® and Stat Server® statistical analysis and server software. This system remotely processes HTS data using powerful and sophisticated statistical methodology but insulates users from the technical details by outputting results in a variety of readily interpretable graphs and tables. It allows users to visualize HTS data and examine assay performance during the HTS campaign to quickly react to or avoid quality problems.</description><identifier>ISSN: 1087-0571</identifier><identifier>ISSN: 2472-5552</identifier><identifier>EISSN: 1552-454X</identifier><identifier>DOI: 10.1177/1087057103258284</identifier><identifier>PMID: 14711388</identifier><language>eng</language><publisher>United States: SAGE Publications</publisher><subject>Computer Graphics ; Drug Evaluation, Preclinical - methods ; Hot Temperature ; Humans ; Quality Control ; Software ; Statistics as Topic - methods ; Technology, Pharmaceutical - methods</subject><ispartof>Journal of biomolecular screening, 2003-12, Vol.8 (6), p.624-633</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-abb2a038e34df6cedb0dc27755377978efac2e69e5336db3462b0341be60707e3</citedby><cites>FETCH-LOGICAL-c406t-abb2a038e34df6cedb0dc27755377978efac2e69e5336db3462b0341be60707e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14711388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gunter, Bert</creatorcontrib><creatorcontrib>Brideau, Christine</creatorcontrib><creatorcontrib>Pikounis, Bill</creatorcontrib><creatorcontrib>Liaw, Andy</creatorcontrib><title>Statistical and Graphical Methods for Quality Control Determination of High-Throughput Screening Data</title><title>Journal of biomolecular screening</title><addtitle>J Biomol Screen</addtitle><description>High-throughput screening (HTS) is used in modern drug discovery to screen hundreds of thousands to millions of compounds on selected protein targets. It is an industrial-scale process relying on sophisticated automation and state-of-the-art detection technologies. Quality control (QC) is an integral part of the process and is used to ensure good quality data and mini mize assay variability while maintaining assay sensitivity. The authors describe new QC methods and show numerous real examples from their biologist-friendly Stat Server® HTS application, a custom-developed software tool built from the commercially available S-PLUS® and Stat Server® statistical analysis and server software. This system remotely processes HTS data using powerful and sophisticated statistical methodology but insulates users from the technical details by outputting results in a variety of readily interpretable graphs and tables. It allows users to visualize HTS data and examine assay performance during the HTS campaign to quickly react to or avoid quality problems.</description><subject>Computer Graphics</subject><subject>Drug Evaluation, Preclinical - methods</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Quality Control</subject><subject>Software</subject><subject>Statistics as Topic - methods</subject><subject>Technology, Pharmaceutical - methods</subject><issn>1087-0571</issn><issn>2472-5552</issn><issn>1552-454X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1Lw0AQxRdRbK3ePcmevEX3M7s9SqutUBFpBW9hk0w-Spqtu5tD_3tTWxAE8TQzvN97hzcIXVNyR6lS95RoRaSihDOpmRYnaEilZJGQ4uO033s52usDdOH9mhDKYyLO0YAKRSnXeohgGUyofagz02DT5njmzLb6vl4gVDb3uLAOv3WmqcMOT2wbnG3wFAK4Td32XttiW-B5XVbRqnK2K6ttF_AycwBt3ZZ4aoK5RGeFaTxcHecIvT89ribzaPE6e548LKJMkDhEJk2ZIVwDF3kRZ5CnJM-YUlJypcZKQ2EyBvEYJOdxnnIRs5RwQVOIiSIK-AjdHnK3zn524EOyqX0GTWNasJ1PFJV9B4r-CzLKSEy17kFyADNnvXdQJFtXb4zbJZQk-x8kv3_QW26O2V26gfzHcCy9B6ID4E0Jydp2ru1L-TvwC4MVjtg</recordid><startdate>200312</startdate><enddate>200312</enddate><creator>Gunter, Bert</creator><creator>Brideau, Christine</creator><creator>Pikounis, Bill</creator><creator>Liaw, Andy</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200312</creationdate><title>Statistical and Graphical Methods for Quality Control Determination of High-Throughput Screening Data</title><author>Gunter, Bert ; Brideau, Christine ; Pikounis, Bill ; Liaw, Andy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-abb2a038e34df6cedb0dc27755377978efac2e69e5336db3462b0341be60707e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computer Graphics</topic><topic>Drug Evaluation, Preclinical - methods</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Quality Control</topic><topic>Software</topic><topic>Statistics as Topic - methods</topic><topic>Technology, Pharmaceutical - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gunter, Bert</creatorcontrib><creatorcontrib>Brideau, Christine</creatorcontrib><creatorcontrib>Pikounis, Bill</creatorcontrib><creatorcontrib>Liaw, Andy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomolecular screening</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gunter, Bert</au><au>Brideau, Christine</au><au>Pikounis, Bill</au><au>Liaw, Andy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical and Graphical Methods for Quality Control Determination of High-Throughput Screening Data</atitle><jtitle>Journal of biomolecular screening</jtitle><addtitle>J Biomol Screen</addtitle><date>2003-12</date><risdate>2003</risdate><volume>8</volume><issue>6</issue><spage>624</spage><epage>633</epage><pages>624-633</pages><issn>1087-0571</issn><issn>2472-5552</issn><eissn>1552-454X</eissn><abstract>High-throughput screening (HTS) is used in modern drug discovery to screen hundreds of thousands to millions of compounds on selected protein targets. It is an industrial-scale process relying on sophisticated automation and state-of-the-art detection technologies. Quality control (QC) is an integral part of the process and is used to ensure good quality data and mini mize assay variability while maintaining assay sensitivity. The authors describe new QC methods and show numerous real examples from their biologist-friendly Stat Server® HTS application, a custom-developed software tool built from the commercially available S-PLUS® and Stat Server® statistical analysis and server software. This system remotely processes HTS data using powerful and sophisticated statistical methodology but insulates users from the technical details by outputting results in a variety of readily interpretable graphs and tables. It allows users to visualize HTS data and examine assay performance during the HTS campaign to quickly react to or avoid quality problems.</abstract><cop>United States</cop><pub>SAGE Publications</pub><pmid>14711388</pmid><doi>10.1177/1087057103258284</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0571 |
ispartof | Journal of biomolecular screening, 2003-12, Vol.8 (6), p.624-633 |
issn | 1087-0571 2472-5552 1552-454X |
language | eng |
recordid | cdi_crossref_primary_10_1177_1087057103258284 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Computer Graphics Drug Evaluation, Preclinical - methods Hot Temperature Humans Quality Control Software Statistics as Topic - methods Technology, Pharmaceutical - methods |
title | Statistical and Graphical Methods for Quality Control Determination of High-Throughput Screening Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20and%20Graphical%20Methods%20for%20Quality%20Control%20Determination%20of%20High-Throughput%20Screening%20Data&rft.jtitle=Journal%20of%20biomolecular%20screening&rft.au=Gunter,%20Bert&rft.date=2003-12&rft.volume=8&rft.issue=6&rft.spage=624&rft.epage=633&rft.pages=624-633&rft.issn=1087-0571&rft.eissn=1552-454X&rft_id=info:doi/10.1177/1087057103258284&rft_dat=%3Cproquest_cross%3E71501371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21206188&rft_id=info:pmid/14711388&rft_sage_id=10.1177_1087057103258284&rfr_iscdi=true |