Statistical and Graphical Methods for Quality Control Determination of High-Throughput Screening Data

High-throughput screening (HTS) is used in modern drug discovery to screen hundreds of thousands to millions of compounds on selected protein targets. It is an industrial-scale process relying on sophisticated automation and state-of-the-art detection technologies. Quality control (QC) is an integra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomolecular screening 2003-12, Vol.8 (6), p.624-633
Hauptverfasser: Gunter, Bert, Brideau, Christine, Pikounis, Bill, Liaw, Andy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 633
container_issue 6
container_start_page 624
container_title Journal of biomolecular screening
container_volume 8
creator Gunter, Bert
Brideau, Christine
Pikounis, Bill
Liaw, Andy
description High-throughput screening (HTS) is used in modern drug discovery to screen hundreds of thousands to millions of compounds on selected protein targets. It is an industrial-scale process relying on sophisticated automation and state-of-the-art detection technologies. Quality control (QC) is an integral part of the process and is used to ensure good quality data and mini mize assay variability while maintaining assay sensitivity. The authors describe new QC methods and show numerous real examples from their biologist-friendly Stat Server® HTS application, a custom-developed software tool built from the commercially available S-PLUS® and Stat Server® statistical analysis and server software. This system remotely processes HTS data using powerful and sophisticated statistical methodology but insulates users from the technical details by outputting results in a variety of readily interpretable graphs and tables. It allows users to visualize HTS data and examine assay performance during the HTS campaign to quickly react to or avoid quality problems.
doi_str_mv 10.1177/1087057103258284
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1087057103258284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1087057103258284</sage_id><sourcerecordid>71501371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-abb2a038e34df6cedb0dc27755377978efac2e69e5336db3462b0341be60707e3</originalsourceid><addsrcrecordid>eNqFkc1Lw0AQxRdRbK3ePcmevEX3M7s9SqutUBFpBW9hk0w-Spqtu5tD_3tTWxAE8TQzvN97hzcIXVNyR6lS95RoRaSihDOpmRYnaEilZJGQ4uO033s52usDdOH9mhDKYyLO0YAKRSnXeohgGUyofagz02DT5njmzLb6vl4gVDb3uLAOv3WmqcMOT2wbnG3wFAK4Td32XttiW-B5XVbRqnK2K6ttF_AycwBt3ZZ4aoK5RGeFaTxcHecIvT89ribzaPE6e548LKJMkDhEJk2ZIVwDF3kRZ5CnJM-YUlJypcZKQ2EyBvEYJOdxnnIRs5RwQVOIiSIK-AjdHnK3zn524EOyqX0GTWNasJ1PFJV9B4r-CzLKSEy17kFyADNnvXdQJFtXb4zbJZQk-x8kv3_QW26O2V26gfzHcCy9B6ID4E0Jydp2ru1L-TvwC4MVjtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21206188</pqid></control><display><type>article</type><title>Statistical and Graphical Methods for Quality Control Determination of High-Throughput Screening Data</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Gunter, Bert ; Brideau, Christine ; Pikounis, Bill ; Liaw, Andy</creator><creatorcontrib>Gunter, Bert ; Brideau, Christine ; Pikounis, Bill ; Liaw, Andy</creatorcontrib><description>High-throughput screening (HTS) is used in modern drug discovery to screen hundreds of thousands to millions of compounds on selected protein targets. It is an industrial-scale process relying on sophisticated automation and state-of-the-art detection technologies. Quality control (QC) is an integral part of the process and is used to ensure good quality data and mini mize assay variability while maintaining assay sensitivity. The authors describe new QC methods and show numerous real examples from their biologist-friendly Stat Server® HTS application, a custom-developed software tool built from the commercially available S-PLUS® and Stat Server® statistical analysis and server software. This system remotely processes HTS data using powerful and sophisticated statistical methodology but insulates users from the technical details by outputting results in a variety of readily interpretable graphs and tables. It allows users to visualize HTS data and examine assay performance during the HTS campaign to quickly react to or avoid quality problems.</description><identifier>ISSN: 1087-0571</identifier><identifier>ISSN: 2472-5552</identifier><identifier>EISSN: 1552-454X</identifier><identifier>DOI: 10.1177/1087057103258284</identifier><identifier>PMID: 14711388</identifier><language>eng</language><publisher>United States: SAGE Publications</publisher><subject>Computer Graphics ; Drug Evaluation, Preclinical - methods ; Hot Temperature ; Humans ; Quality Control ; Software ; Statistics as Topic - methods ; Technology, Pharmaceutical - methods</subject><ispartof>Journal of biomolecular screening, 2003-12, Vol.8 (6), p.624-633</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-abb2a038e34df6cedb0dc27755377978efac2e69e5336db3462b0341be60707e3</citedby><cites>FETCH-LOGICAL-c406t-abb2a038e34df6cedb0dc27755377978efac2e69e5336db3462b0341be60707e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14711388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gunter, Bert</creatorcontrib><creatorcontrib>Brideau, Christine</creatorcontrib><creatorcontrib>Pikounis, Bill</creatorcontrib><creatorcontrib>Liaw, Andy</creatorcontrib><title>Statistical and Graphical Methods for Quality Control Determination of High-Throughput Screening Data</title><title>Journal of biomolecular screening</title><addtitle>J Biomol Screen</addtitle><description>High-throughput screening (HTS) is used in modern drug discovery to screen hundreds of thousands to millions of compounds on selected protein targets. It is an industrial-scale process relying on sophisticated automation and state-of-the-art detection technologies. Quality control (QC) is an integral part of the process and is used to ensure good quality data and mini mize assay variability while maintaining assay sensitivity. The authors describe new QC methods and show numerous real examples from their biologist-friendly Stat Server® HTS application, a custom-developed software tool built from the commercially available S-PLUS® and Stat Server® statistical analysis and server software. This system remotely processes HTS data using powerful and sophisticated statistical methodology but insulates users from the technical details by outputting results in a variety of readily interpretable graphs and tables. It allows users to visualize HTS data and examine assay performance during the HTS campaign to quickly react to or avoid quality problems.</description><subject>Computer Graphics</subject><subject>Drug Evaluation, Preclinical - methods</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Quality Control</subject><subject>Software</subject><subject>Statistics as Topic - methods</subject><subject>Technology, Pharmaceutical - methods</subject><issn>1087-0571</issn><issn>2472-5552</issn><issn>1552-454X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1Lw0AQxRdRbK3ePcmevEX3M7s9SqutUBFpBW9hk0w-Spqtu5tD_3tTWxAE8TQzvN97hzcIXVNyR6lS95RoRaSihDOpmRYnaEilZJGQ4uO033s52usDdOH9mhDKYyLO0YAKRSnXeohgGUyofagz02DT5njmzLb6vl4gVDb3uLAOv3WmqcMOT2wbnG3wFAK4Td32XttiW-B5XVbRqnK2K6ttF_AycwBt3ZZ4aoK5RGeFaTxcHecIvT89ribzaPE6e548LKJMkDhEJk2ZIVwDF3kRZ5CnJM-YUlJypcZKQ2EyBvEYJOdxnnIRs5RwQVOIiSIK-AjdHnK3zn524EOyqX0GTWNasJ1PFJV9B4r-CzLKSEy17kFyADNnvXdQJFtXb4zbJZQk-x8kv3_QW26O2V26gfzHcCy9B6ID4E0Jydp2ru1L-TvwC4MVjtg</recordid><startdate>200312</startdate><enddate>200312</enddate><creator>Gunter, Bert</creator><creator>Brideau, Christine</creator><creator>Pikounis, Bill</creator><creator>Liaw, Andy</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200312</creationdate><title>Statistical and Graphical Methods for Quality Control Determination of High-Throughput Screening Data</title><author>Gunter, Bert ; Brideau, Christine ; Pikounis, Bill ; Liaw, Andy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-abb2a038e34df6cedb0dc27755377978efac2e69e5336db3462b0341be60707e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computer Graphics</topic><topic>Drug Evaluation, Preclinical - methods</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Quality Control</topic><topic>Software</topic><topic>Statistics as Topic - methods</topic><topic>Technology, Pharmaceutical - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gunter, Bert</creatorcontrib><creatorcontrib>Brideau, Christine</creatorcontrib><creatorcontrib>Pikounis, Bill</creatorcontrib><creatorcontrib>Liaw, Andy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomolecular screening</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gunter, Bert</au><au>Brideau, Christine</au><au>Pikounis, Bill</au><au>Liaw, Andy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical and Graphical Methods for Quality Control Determination of High-Throughput Screening Data</atitle><jtitle>Journal of biomolecular screening</jtitle><addtitle>J Biomol Screen</addtitle><date>2003-12</date><risdate>2003</risdate><volume>8</volume><issue>6</issue><spage>624</spage><epage>633</epage><pages>624-633</pages><issn>1087-0571</issn><issn>2472-5552</issn><eissn>1552-454X</eissn><abstract>High-throughput screening (HTS) is used in modern drug discovery to screen hundreds of thousands to millions of compounds on selected protein targets. It is an industrial-scale process relying on sophisticated automation and state-of-the-art detection technologies. Quality control (QC) is an integral part of the process and is used to ensure good quality data and mini mize assay variability while maintaining assay sensitivity. The authors describe new QC methods and show numerous real examples from their biologist-friendly Stat Server® HTS application, a custom-developed software tool built from the commercially available S-PLUS® and Stat Server® statistical analysis and server software. This system remotely processes HTS data using powerful and sophisticated statistical methodology but insulates users from the technical details by outputting results in a variety of readily interpretable graphs and tables. It allows users to visualize HTS data and examine assay performance during the HTS campaign to quickly react to or avoid quality problems.</abstract><cop>United States</cop><pub>SAGE Publications</pub><pmid>14711388</pmid><doi>10.1177/1087057103258284</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0571
ispartof Journal of biomolecular screening, 2003-12, Vol.8 (6), p.624-633
issn 1087-0571
2472-5552
1552-454X
language eng
recordid cdi_crossref_primary_10_1177_1087057103258284
source MEDLINE; Alma/SFX Local Collection
subjects Computer Graphics
Drug Evaluation, Preclinical - methods
Hot Temperature
Humans
Quality Control
Software
Statistics as Topic - methods
Technology, Pharmaceutical - methods
title Statistical and Graphical Methods for Quality Control Determination of High-Throughput Screening Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20and%20Graphical%20Methods%20for%20Quality%20Control%20Determination%20of%20High-Throughput%20Screening%20Data&rft.jtitle=Journal%20of%20biomolecular%20screening&rft.au=Gunter,%20Bert&rft.date=2003-12&rft.volume=8&rft.issue=6&rft.spage=624&rft.epage=633&rft.pages=624-633&rft.issn=1087-0571&rft.eissn=1552-454X&rft_id=info:doi/10.1177/1087057103258284&rft_dat=%3Cproquest_cross%3E71501371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21206188&rft_id=info:pmid/14711388&rft_sage_id=10.1177_1087057103258284&rfr_iscdi=true