Effective properties of multi-laminated micropolar composites with Fibonacci and random structures

In this work, the two-scale asymptotic homogenization method (AHM) is developed to describe the effective behavior of multi-laminated elastic micropolar composites with Fibonacci and random structure under perfect contact conditions at the interfaces. The local problem statements over the periodic c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics and mechanics of solids 2023-10
Hauptverfasser: Espinosa-Almeyda, Yoanh, Guinovart-Sanjuán, David, Rodríguez-Ramos, Reinaldo, Camacho-Montes, Héctor, Rodríguez-Bermúdez, Panters
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Mathematics and mechanics of solids
container_volume
creator Espinosa-Almeyda, Yoanh
Guinovart-Sanjuán, David
Rodríguez-Ramos, Reinaldo
Camacho-Montes, Héctor
Rodríguez-Bermúdez, Panters
description In this work, the two-scale asymptotic homogenization method (AHM) is developed to describe the effective behavior of multi-laminated elastic micropolar composites with Fibonacci and random structure under perfect contact conditions at the interfaces. The local problem statements over the periodic cell [Formula: see text] are presented, and the corresponding effective stiffness and torque properties are reported. The transversal cross-section of the periodic cell [Formula: see text] is characterized by a laminated structure where the pattern for the layers follows two distinct configurations: (a) a Fibonacci arrangement, and (b) a random sequence focused on the probabilistic binomial function. The non-null effective properties of multi-laminated Cosserat elastic composites with isotropic centro-symmetric constituents are listed. Numerical results for multi-laminated elastic micropolar composites with both types of structures and centro-symmetric isotropic constituents are illustrated and discussed. The overall effective behavior for both cases converges to specific effective values of periodic structures as the number of layers increases.
doi_str_mv 10.1177/10812865231191733
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1177_10812865231191733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1177_10812865231191733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c197t-6cf4822562f241248a99bb8734ad6605cda0cd72bfb5e8d7fc238df377fcf8a53</originalsourceid><addsrcrecordid>eNplUM1KxDAYDKLguvoA3vIC0XxJ26RHWXZVWPCi55LmByNNU5JU8e3NojcvMwMzDMMgdAv0DkCIe6ASmOxaxgF6EJyfoQ2IBginTJ5XXX1yClyiq5w_KKWsFXyDxr1zVhf_afGS4mJT8Tbj6HBYp-LJpIKfVbEGB6-rHyeVsI5hidmXGvzy5R0f_BhnpbXHajY4VYgB55JWXdZk8zW6cGrK9uaPt-jtsH_dPZHjy-Pz7uFINPSikE67RjLWdsyxBlgjVd-PoxS8UabraKuNotoINrqxtdIIpxmXxnFRlZOq5VsEv711aM7JumFJPqj0PQAdTicN_07iP5XfXGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effective properties of multi-laminated micropolar composites with Fibonacci and random structures</title><source>SAGE Publications</source><creator>Espinosa-Almeyda, Yoanh ; Guinovart-Sanjuán, David ; Rodríguez-Ramos, Reinaldo ; Camacho-Montes, Héctor ; Rodríguez-Bermúdez, Panters</creator><creatorcontrib>Espinosa-Almeyda, Yoanh ; Guinovart-Sanjuán, David ; Rodríguez-Ramos, Reinaldo ; Camacho-Montes, Héctor ; Rodríguez-Bermúdez, Panters</creatorcontrib><description>In this work, the two-scale asymptotic homogenization method (AHM) is developed to describe the effective behavior of multi-laminated elastic micropolar composites with Fibonacci and random structure under perfect contact conditions at the interfaces. The local problem statements over the periodic cell [Formula: see text] are presented, and the corresponding effective stiffness and torque properties are reported. The transversal cross-section of the periodic cell [Formula: see text] is characterized by a laminated structure where the pattern for the layers follows two distinct configurations: (a) a Fibonacci arrangement, and (b) a random sequence focused on the probabilistic binomial function. The non-null effective properties of multi-laminated Cosserat elastic composites with isotropic centro-symmetric constituents are listed. Numerical results for multi-laminated elastic micropolar composites with both types of structures and centro-symmetric isotropic constituents are illustrated and discussed. The overall effective behavior for both cases converges to specific effective values of periodic structures as the number of layers increases.</description><identifier>ISSN: 1081-2865</identifier><identifier>EISSN: 1741-3028</identifier><identifier>DOI: 10.1177/10812865231191733</identifier><language>eng</language><ispartof>Mathematics and mechanics of solids, 2023-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c197t-6cf4822562f241248a99bb8734ad6605cda0cd72bfb5e8d7fc238df377fcf8a53</cites><orcidid>0000-0002-3093-6948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Espinosa-Almeyda, Yoanh</creatorcontrib><creatorcontrib>Guinovart-Sanjuán, David</creatorcontrib><creatorcontrib>Rodríguez-Ramos, Reinaldo</creatorcontrib><creatorcontrib>Camacho-Montes, Héctor</creatorcontrib><creatorcontrib>Rodríguez-Bermúdez, Panters</creatorcontrib><title>Effective properties of multi-laminated micropolar composites with Fibonacci and random structures</title><title>Mathematics and mechanics of solids</title><description>In this work, the two-scale asymptotic homogenization method (AHM) is developed to describe the effective behavior of multi-laminated elastic micropolar composites with Fibonacci and random structure under perfect contact conditions at the interfaces. The local problem statements over the periodic cell [Formula: see text] are presented, and the corresponding effective stiffness and torque properties are reported. The transversal cross-section of the periodic cell [Formula: see text] is characterized by a laminated structure where the pattern for the layers follows two distinct configurations: (a) a Fibonacci arrangement, and (b) a random sequence focused on the probabilistic binomial function. The non-null effective properties of multi-laminated Cosserat elastic composites with isotropic centro-symmetric constituents are listed. Numerical results for multi-laminated elastic micropolar composites with both types of structures and centro-symmetric isotropic constituents are illustrated and discussed. The overall effective behavior for both cases converges to specific effective values of periodic structures as the number of layers increases.</description><issn>1081-2865</issn><issn>1741-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNplUM1KxDAYDKLguvoA3vIC0XxJ26RHWXZVWPCi55LmByNNU5JU8e3NojcvMwMzDMMgdAv0DkCIe6ASmOxaxgF6EJyfoQ2IBginTJ5XXX1yClyiq5w_KKWsFXyDxr1zVhf_afGS4mJT8Tbj6HBYp-LJpIKfVbEGB6-rHyeVsI5hidmXGvzy5R0f_BhnpbXHajY4VYgB55JWXdZk8zW6cGrK9uaPt-jtsH_dPZHjy-Pz7uFINPSikE67RjLWdsyxBlgjVd-PoxS8UabraKuNotoINrqxtdIIpxmXxnFRlZOq5VsEv711aM7JumFJPqj0PQAdTicN_07iP5XfXGo</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Espinosa-Almeyda, Yoanh</creator><creator>Guinovart-Sanjuán, David</creator><creator>Rodríguez-Ramos, Reinaldo</creator><creator>Camacho-Montes, Héctor</creator><creator>Rodríguez-Bermúdez, Panters</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3093-6948</orcidid></search><sort><creationdate>20231004</creationdate><title>Effective properties of multi-laminated micropolar composites with Fibonacci and random structures</title><author>Espinosa-Almeyda, Yoanh ; Guinovart-Sanjuán, David ; Rodríguez-Ramos, Reinaldo ; Camacho-Montes, Héctor ; Rodríguez-Bermúdez, Panters</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c197t-6cf4822562f241248a99bb8734ad6605cda0cd72bfb5e8d7fc238df377fcf8a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Espinosa-Almeyda, Yoanh</creatorcontrib><creatorcontrib>Guinovart-Sanjuán, David</creatorcontrib><creatorcontrib>Rodríguez-Ramos, Reinaldo</creatorcontrib><creatorcontrib>Camacho-Montes, Héctor</creatorcontrib><creatorcontrib>Rodríguez-Bermúdez, Panters</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics and mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Espinosa-Almeyda, Yoanh</au><au>Guinovart-Sanjuán, David</au><au>Rodríguez-Ramos, Reinaldo</au><au>Camacho-Montes, Héctor</au><au>Rodríguez-Bermúdez, Panters</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective properties of multi-laminated micropolar composites with Fibonacci and random structures</atitle><jtitle>Mathematics and mechanics of solids</jtitle><date>2023-10-04</date><risdate>2023</risdate><issn>1081-2865</issn><eissn>1741-3028</eissn><abstract>In this work, the two-scale asymptotic homogenization method (AHM) is developed to describe the effective behavior of multi-laminated elastic micropolar composites with Fibonacci and random structure under perfect contact conditions at the interfaces. The local problem statements over the periodic cell [Formula: see text] are presented, and the corresponding effective stiffness and torque properties are reported. The transversal cross-section of the periodic cell [Formula: see text] is characterized by a laminated structure where the pattern for the layers follows two distinct configurations: (a) a Fibonacci arrangement, and (b) a random sequence focused on the probabilistic binomial function. The non-null effective properties of multi-laminated Cosserat elastic composites with isotropic centro-symmetric constituents are listed. Numerical results for multi-laminated elastic micropolar composites with both types of structures and centro-symmetric isotropic constituents are illustrated and discussed. The overall effective behavior for both cases converges to specific effective values of periodic structures as the number of layers increases.</abstract><doi>10.1177/10812865231191733</doi><orcidid>https://orcid.org/0000-0002-3093-6948</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1081-2865
ispartof Mathematics and mechanics of solids, 2023-10
issn 1081-2865
1741-3028
language eng
recordid cdi_crossref_primary_10_1177_10812865231191733
source SAGE Publications
title Effective properties of multi-laminated micropolar composites with Fibonacci and random structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A39%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20properties%20of%20multi-laminated%20micropolar%20composites%20with%20Fibonacci%20and%20random%20structures&rft.jtitle=Mathematics%20and%20mechanics%20of%20solids&rft.au=Espinosa-Almeyda,%20Yoanh&rft.date=2023-10-04&rft.issn=1081-2865&rft.eissn=1741-3028&rft_id=info:doi/10.1177/10812865231191733&rft_dat=%3Ccrossref%3E10_1177_10812865231191733%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true