Effective properties of multi-laminated micropolar composites with Fibonacci and random structures
In this work, the two-scale asymptotic homogenization method (AHM) is developed to describe the effective behavior of multi-laminated elastic micropolar composites with Fibonacci and random structure under perfect contact conditions at the interfaces. The local problem statements over the periodic c...
Gespeichert in:
Veröffentlicht in: | Mathematics and mechanics of solids 2023-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, the two-scale asymptotic homogenization method (AHM) is developed to describe the effective behavior of multi-laminated elastic micropolar composites with Fibonacci and random structure under perfect contact conditions at the interfaces. The local problem statements over the periodic cell [Formula: see text] are presented, and the corresponding effective stiffness and torque properties are reported. The transversal cross-section of the periodic cell [Formula: see text] is characterized by a laminated structure where the pattern for the layers follows two distinct configurations: (a) a Fibonacci arrangement, and (b) a random sequence focused on the probabilistic binomial function. The non-null effective properties of multi-laminated Cosserat elastic composites with isotropic centro-symmetric constituents are listed. Numerical results for multi-laminated elastic micropolar composites with both types of structures and centro-symmetric isotropic constituents are illustrated and discussed. The overall effective behavior for both cases converges to specific effective values of periodic structures as the number of layers increases. |
---|---|
ISSN: | 1081-2865 1741-3028 |
DOI: | 10.1177/10812865231191733 |