Dispersive transverse waves for a strain-limiting continuum model
It is well known that propagation of waves in homogeneous linearized elastic materials of infinite extent is not dispersive. Motivated by the work of Rubin, Rosenau, and Gottlieb, we develop a generalized continuum model for the response of strain-limiting materials that are dispersive. Our approach...
Gespeichert in:
Veröffentlicht in: | Mathematics and mechanics of solids 2024-06, Vol.29 (6), p.1216-1227 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1227 |
---|---|
container_issue | 6 |
container_start_page | 1216 |
container_title | Mathematics and mechanics of solids |
container_volume | 29 |
creator | Erbay, HA Rajagopal, KR Saccomandi, G Şengül, Y |
description | It is well known that propagation of waves in homogeneous linearized elastic materials of infinite extent is not dispersive. Motivated by the work of Rubin, Rosenau, and Gottlieb, we develop a generalized continuum model for the response of strain-limiting materials that are dispersive. Our approach is based on both a direct inclusion of Rivlin–Ericksen tensors in the constitutive relations and writing the linearized strain in terms of the stress. As a result, we derive two coupled generalized improved Boussinesq-type equations in the stress components for the propagation of pure transverse waves. We investigate the traveling wave solutions of the generalized Boussinesq-type equations and show that the resulting ordinary differential equations form a Hamiltonian system. Linearly and circularly polarized cases are also investigated. In the case of unidirectional propagation, we show that the propagation of small-but-finite amplitude long waves is governed by the complex Korteweg–de Vries (KdV) equation. |
doi_str_mv | 10.1177/10812865231188931 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_10812865231188931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10812865231188931</sage_id><sourcerecordid>10.1177_10812865231188931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-410954f3c44bf2680f001acc3a14718a2081224ba4429f857b4e8ece6f12ba2c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAez8Ay4e24mdZVUeRarEBtaRY8aVqzwqOwni73FVdkis7rzOaOYScg98BaD1A3ADwpSFkADGVBIuyAK0Aia5MJc5zn12GrgmNykdOOei0HJB1o8hHTGmMCMdo-3TnBOkX3bGRP0QqaUp10PP2tCFMfR76oY-6zR1tBs-sb0lV962Ce9-dUk-np_eN1u2e3t53ax3zAldjUwBrwrlpVOq8aI03HMO1jlpQWkwVpweEKqxSonKm0I3Cg06LD2IxgonlwTOe10cUoro62MMnY3fNfD65EH9x4PMrM5MsnusD8MU-3ziP8APX3hb8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dispersive transverse waves for a strain-limiting continuum model</title><source>SAGE Complete A-Z List</source><creator>Erbay, HA ; Rajagopal, KR ; Saccomandi, G ; Şengül, Y</creator><creatorcontrib>Erbay, HA ; Rajagopal, KR ; Saccomandi, G ; Şengül, Y</creatorcontrib><description>It is well known that propagation of waves in homogeneous linearized elastic materials of infinite extent is not dispersive. Motivated by the work of Rubin, Rosenau, and Gottlieb, we develop a generalized continuum model for the response of strain-limiting materials that are dispersive. Our approach is based on both a direct inclusion of Rivlin–Ericksen tensors in the constitutive relations and writing the linearized strain in terms of the stress. As a result, we derive two coupled generalized improved Boussinesq-type equations in the stress components for the propagation of pure transverse waves. We investigate the traveling wave solutions of the generalized Boussinesq-type equations and show that the resulting ordinary differential equations form a Hamiltonian system. Linearly and circularly polarized cases are also investigated. In the case of unidirectional propagation, we show that the propagation of small-but-finite amplitude long waves is governed by the complex Korteweg–de Vries (KdV) equation.</description><identifier>ISSN: 1081-2865</identifier><identifier>EISSN: 1741-3028</identifier><identifier>DOI: 10.1177/10812865231188931</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Mathematics and mechanics of solids, 2024-06, Vol.29 (6), p.1216-1227</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-410954f3c44bf2680f001acc3a14718a2081224ba4429f857b4e8ece6f12ba2c3</cites><orcidid>0000-0002-4636-5131 ; 0000-0001-5923-3173 ; 0000-0001-7987-8892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/10812865231188931$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/10812865231188931$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids></links><search><creatorcontrib>Erbay, HA</creatorcontrib><creatorcontrib>Rajagopal, KR</creatorcontrib><creatorcontrib>Saccomandi, G</creatorcontrib><creatorcontrib>Şengül, Y</creatorcontrib><title>Dispersive transverse waves for a strain-limiting continuum model</title><title>Mathematics and mechanics of solids</title><description>It is well known that propagation of waves in homogeneous linearized elastic materials of infinite extent is not dispersive. Motivated by the work of Rubin, Rosenau, and Gottlieb, we develop a generalized continuum model for the response of strain-limiting materials that are dispersive. Our approach is based on both a direct inclusion of Rivlin–Ericksen tensors in the constitutive relations and writing the linearized strain in terms of the stress. As a result, we derive two coupled generalized improved Boussinesq-type equations in the stress components for the propagation of pure transverse waves. We investigate the traveling wave solutions of the generalized Boussinesq-type equations and show that the resulting ordinary differential equations form a Hamiltonian system. Linearly and circularly polarized cases are also investigated. In the case of unidirectional propagation, we show that the propagation of small-but-finite amplitude long waves is governed by the complex Korteweg–de Vries (KdV) equation.</description><issn>1081-2865</issn><issn>1741-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwAez8Ay4e24mdZVUeRarEBtaRY8aVqzwqOwni73FVdkis7rzOaOYScg98BaD1A3ADwpSFkADGVBIuyAK0Aia5MJc5zn12GrgmNykdOOei0HJB1o8hHTGmMCMdo-3TnBOkX3bGRP0QqaUp10PP2tCFMfR76oY-6zR1tBs-sb0lV962Ce9-dUk-np_eN1u2e3t53ax3zAldjUwBrwrlpVOq8aI03HMO1jlpQWkwVpweEKqxSonKm0I3Cg06LD2IxgonlwTOe10cUoro62MMnY3fNfD65EH9x4PMrM5MsnusD8MU-3ziP8APX3hb8g</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Erbay, HA</creator><creator>Rajagopal, KR</creator><creator>Saccomandi, G</creator><creator>Şengül, Y</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4636-5131</orcidid><orcidid>https://orcid.org/0000-0001-5923-3173</orcidid><orcidid>https://orcid.org/0000-0001-7987-8892</orcidid></search><sort><creationdate>20240601</creationdate><title>Dispersive transverse waves for a strain-limiting continuum model</title><author>Erbay, HA ; Rajagopal, KR ; Saccomandi, G ; Şengül, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-410954f3c44bf2680f001acc3a14718a2081224ba4429f857b4e8ece6f12ba2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erbay, HA</creatorcontrib><creatorcontrib>Rajagopal, KR</creatorcontrib><creatorcontrib>Saccomandi, G</creatorcontrib><creatorcontrib>Şengül, Y</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><jtitle>Mathematics and mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erbay, HA</au><au>Rajagopal, KR</au><au>Saccomandi, G</au><au>Şengül, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersive transverse waves for a strain-limiting continuum model</atitle><jtitle>Mathematics and mechanics of solids</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>29</volume><issue>6</issue><spage>1216</spage><epage>1227</epage><pages>1216-1227</pages><issn>1081-2865</issn><eissn>1741-3028</eissn><abstract>It is well known that propagation of waves in homogeneous linearized elastic materials of infinite extent is not dispersive. Motivated by the work of Rubin, Rosenau, and Gottlieb, we develop a generalized continuum model for the response of strain-limiting materials that are dispersive. Our approach is based on both a direct inclusion of Rivlin–Ericksen tensors in the constitutive relations and writing the linearized strain in terms of the stress. As a result, we derive two coupled generalized improved Boussinesq-type equations in the stress components for the propagation of pure transverse waves. We investigate the traveling wave solutions of the generalized Boussinesq-type equations and show that the resulting ordinary differential equations form a Hamiltonian system. Linearly and circularly polarized cases are also investigated. In the case of unidirectional propagation, we show that the propagation of small-but-finite amplitude long waves is governed by the complex Korteweg–de Vries (KdV) equation.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/10812865231188931</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4636-5131</orcidid><orcidid>https://orcid.org/0000-0001-5923-3173</orcidid><orcidid>https://orcid.org/0000-0001-7987-8892</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1081-2865 |
ispartof | Mathematics and mechanics of solids, 2024-06, Vol.29 (6), p.1216-1227 |
issn | 1081-2865 1741-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1177_10812865231188931 |
source | SAGE Complete A-Z List |
title | Dispersive transverse waves for a strain-limiting continuum model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersive%20transverse%20waves%20for%20a%20strain-limiting%20continuum%20model&rft.jtitle=Mathematics%20and%20mechanics%20of%20solids&rft.au=Erbay,%20HA&rft.date=2024-06-01&rft.volume=29&rft.issue=6&rft.spage=1216&rft.epage=1227&rft.pages=1216-1227&rft.issn=1081-2865&rft.eissn=1741-3028&rft_id=info:doi/10.1177/10812865231188931&rft_dat=%3Csage_cross%3E10.1177_10812865231188931%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_10812865231188931&rfr_iscdi=true |