Elastodynamics of a coated half-space under a sliding contact
The paper deals with elastic wave propagating in a layer on a half-space induced by a vertical force. The focus is on the effect of a sliding contact along the interface and its comparative study with a perfect one. The effective boundary conditions substituting the presence of the layer are derived...
Gespeichert in:
Veröffentlicht in: | Mathematics and mechanics of solids 2022-08, Vol.27 (8), p.1480-1493 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1493 |
---|---|
container_issue | 8 |
container_start_page | 1480 |
container_title | Mathematics and mechanics of solids |
container_volume | 27 |
creator | Bratov, V Kaplunov, J Lapatsin, SN Prikazchikov, DA |
description | The paper deals with elastic wave propagating in a layer on a half-space induced by a vertical force. The focus is on the effect of a sliding contact along the interface and its comparative study with a perfect one. The effective boundary conditions substituting the presence of the layer are derived. The leading order term in these conditions corresponds to vertical inertia of the layer, whereas next order correction involves the effect of plate waves in the coating. Analysis of the associated dispersion relation confirms the existence of a Rayleigh-type wave, along with extensional and shear plate waves. An asymptotic hyperbolic-elliptic formulation for surface wave field is also presented. This includes a hyperbolic equation singularly perturbed by a pseudo-differential operator playing a role of a boundary condition for the elliptic equation governing decay over the interior. The sign of the coefficient at the pseudo-differential operator is demonstrated to be always negative, corresponding to a local maximum of the phase speed at zero wave number, and consequently to a distinct receding type of the Rayleigh-type wave quasi-front induced by an impulse load. |
doi_str_mv | 10.1177/10812865221094425 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_10812865221094425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10812865221094425</sage_id><sourcerecordid>10.1177_10812865221094425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-8da8408d3c3604c88316209b195a611550191ac3ebf1173c883bd3958121b23f3</originalsourceid><addsrcrecordid>eNp9j01Lw0AQhhexYG39Ad7yB7bO7GaTzcGDlGqFghc9h8l-1JQ0Kbvpof_eDfUmeJqB93mHeRh7RFghluUTgkahCyUEQpXnQt2wOZY5cglC36Y95XwC7th9jAcAEKqUc_a86SiOg730dGxNzAafUWYGGp3NvqnzPJ7IuOzcWxdSErvWtv0-Ef1IZlyymacuuoffuWBfr5vP9ZbvPt7e1y87bqQoR64t6Ry0lUYWkButJRYCqgYrRQWiUoAVkpGu8UlGTkBjZaWSEjZCerlgeL1rwhBjcL4-hfZI4VIj1JN__cc_dVbXTqS9qw_DOfTpxX8KPyOpWFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Elastodynamics of a coated half-space under a sliding contact</title><source>SAGE Complete A-Z List</source><creator>Bratov, V ; Kaplunov, J ; Lapatsin, SN ; Prikazchikov, DA</creator><creatorcontrib>Bratov, V ; Kaplunov, J ; Lapatsin, SN ; Prikazchikov, DA</creatorcontrib><description>The paper deals with elastic wave propagating in a layer on a half-space induced by a vertical force. The focus is on the effect of a sliding contact along the interface and its comparative study with a perfect one. The effective boundary conditions substituting the presence of the layer are derived. The leading order term in these conditions corresponds to vertical inertia of the layer, whereas next order correction involves the effect of plate waves in the coating. Analysis of the associated dispersion relation confirms the existence of a Rayleigh-type wave, along with extensional and shear plate waves. An asymptotic hyperbolic-elliptic formulation for surface wave field is also presented. This includes a hyperbolic equation singularly perturbed by a pseudo-differential operator playing a role of a boundary condition for the elliptic equation governing decay over the interior. The sign of the coefficient at the pseudo-differential operator is demonstrated to be always negative, corresponding to a local maximum of the phase speed at zero wave number, and consequently to a distinct receding type of the Rayleigh-type wave quasi-front induced by an impulse load.</description><identifier>ISSN: 1081-2865</identifier><identifier>EISSN: 1741-3028</identifier><identifier>DOI: 10.1177/10812865221094425</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Mathematics and mechanics of solids, 2022-08, Vol.27 (8), p.1480-1493</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-8da8408d3c3604c88316209b195a611550191ac3ebf1173c883bd3958121b23f3</citedby><cites>FETCH-LOGICAL-c327t-8da8408d3c3604c88316209b195a611550191ac3ebf1173c883bd3958121b23f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/10812865221094425$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/10812865221094425$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,43620,43621</link.rule.ids></links><search><creatorcontrib>Bratov, V</creatorcontrib><creatorcontrib>Kaplunov, J</creatorcontrib><creatorcontrib>Lapatsin, SN</creatorcontrib><creatorcontrib>Prikazchikov, DA</creatorcontrib><title>Elastodynamics of a coated half-space under a sliding contact</title><title>Mathematics and mechanics of solids</title><description>The paper deals with elastic wave propagating in a layer on a half-space induced by a vertical force. The focus is on the effect of a sliding contact along the interface and its comparative study with a perfect one. The effective boundary conditions substituting the presence of the layer are derived. The leading order term in these conditions corresponds to vertical inertia of the layer, whereas next order correction involves the effect of plate waves in the coating. Analysis of the associated dispersion relation confirms the existence of a Rayleigh-type wave, along with extensional and shear plate waves. An asymptotic hyperbolic-elliptic formulation for surface wave field is also presented. This includes a hyperbolic equation singularly perturbed by a pseudo-differential operator playing a role of a boundary condition for the elliptic equation governing decay over the interior. The sign of the coefficient at the pseudo-differential operator is demonstrated to be always negative, corresponding to a local maximum of the phase speed at zero wave number, and consequently to a distinct receding type of the Rayleigh-type wave quasi-front induced by an impulse load.</description><issn>1081-2865</issn><issn>1741-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp9j01Lw0AQhhexYG39Ad7yB7bO7GaTzcGDlGqFghc9h8l-1JQ0Kbvpof_eDfUmeJqB93mHeRh7RFghluUTgkahCyUEQpXnQt2wOZY5cglC36Y95XwC7th9jAcAEKqUc_a86SiOg730dGxNzAafUWYGGp3NvqnzPJ7IuOzcWxdSErvWtv0-Ef1IZlyymacuuoffuWBfr5vP9ZbvPt7e1y87bqQoR64t6Ry0lUYWkButJRYCqgYrRQWiUoAVkpGu8UlGTkBjZaWSEjZCerlgeL1rwhBjcL4-hfZI4VIj1JN__cc_dVbXTqS9qw_DOfTpxX8KPyOpWFs</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Bratov, V</creator><creator>Kaplunov, J</creator><creator>Lapatsin, SN</creator><creator>Prikazchikov, DA</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202208</creationdate><title>Elastodynamics of a coated half-space under a sliding contact</title><author>Bratov, V ; Kaplunov, J ; Lapatsin, SN ; Prikazchikov, DA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-8da8408d3c3604c88316209b195a611550191ac3ebf1173c883bd3958121b23f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bratov, V</creatorcontrib><creatorcontrib>Kaplunov, J</creatorcontrib><creatorcontrib>Lapatsin, SN</creatorcontrib><creatorcontrib>Prikazchikov, DA</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><jtitle>Mathematics and mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bratov, V</au><au>Kaplunov, J</au><au>Lapatsin, SN</au><au>Prikazchikov, DA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastodynamics of a coated half-space under a sliding contact</atitle><jtitle>Mathematics and mechanics of solids</jtitle><date>2022-08</date><risdate>2022</risdate><volume>27</volume><issue>8</issue><spage>1480</spage><epage>1493</epage><pages>1480-1493</pages><issn>1081-2865</issn><eissn>1741-3028</eissn><abstract>The paper deals with elastic wave propagating in a layer on a half-space induced by a vertical force. The focus is on the effect of a sliding contact along the interface and its comparative study with a perfect one. The effective boundary conditions substituting the presence of the layer are derived. The leading order term in these conditions corresponds to vertical inertia of the layer, whereas next order correction involves the effect of plate waves in the coating. Analysis of the associated dispersion relation confirms the existence of a Rayleigh-type wave, along with extensional and shear plate waves. An asymptotic hyperbolic-elliptic formulation for surface wave field is also presented. This includes a hyperbolic equation singularly perturbed by a pseudo-differential operator playing a role of a boundary condition for the elliptic equation governing decay over the interior. The sign of the coefficient at the pseudo-differential operator is demonstrated to be always negative, corresponding to a local maximum of the phase speed at zero wave number, and consequently to a distinct receding type of the Rayleigh-type wave quasi-front induced by an impulse load.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/10812865221094425</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1081-2865 |
ispartof | Mathematics and mechanics of solids, 2022-08, Vol.27 (8), p.1480-1493 |
issn | 1081-2865 1741-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1177_10812865221094425 |
source | SAGE Complete A-Z List |
title | Elastodynamics of a coated half-space under a sliding contact |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastodynamics%20of%20a%20coated%20half-space%20under%20a%20sliding%20contact&rft.jtitle=Mathematics%20and%20mechanics%20of%20solids&rft.au=Bratov,%20V&rft.date=2022-08&rft.volume=27&rft.issue=8&rft.spage=1480&rft.epage=1493&rft.pages=1480-1493&rft.issn=1081-2865&rft.eissn=1741-3028&rft_id=info:doi/10.1177/10812865221094425&rft_dat=%3Csage_cross%3E10.1177_10812865221094425%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_10812865221094425&rfr_iscdi=true |