A modified Fourier series-based solution with improved rate of convergence for two-dimensional rectangular isotropic linear elastic solids

This paper presents a new displacement solution based on a Modified Fourier Series (MFS) for isotropic linear elastic solids under plane strain or plane stress states subject to continuous displacement and traction boundary conditions in a two-dimensional rectangular domain. In contrast with existin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics and mechanics of solids 2022-03, Vol.27 (3), p.410-432
Hauptverfasser: Barulich, Néstor Darío, Deutsch, Aharon, Eisenberger, Moshe, Godoy, Luis Augusto, Dardati, Patricia Mónica
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 432
container_issue 3
container_start_page 410
container_title Mathematics and mechanics of solids
container_volume 27
creator Barulich, Néstor Darío
Deutsch, Aharon
Eisenberger, Moshe
Godoy, Luis Augusto
Dardati, Patricia Mónica
description This paper presents a new displacement solution based on a Modified Fourier Series (MFS) for isotropic linear elastic solids under plane strain or plane stress states subject to continuous displacement and traction boundary conditions in a two-dimensional rectangular domain. In contrast with existing approaches that are restricted to Fourier series with a rate of convergence of second order O(m-2), the MFS allows increasing the rate of convergence of the solution. The governing Partial Differential Equations (PDEs) are satisfied exactly by two displacement solutions while the boundary conditions are approximated after solving a finite system of algebraic equations. Numerical results for a solution with an MFS with rate of convergence O(m-3) are compared with results from existing numerical and analytical methods, showing the enhanced behavior of the present solution.
doi_str_mv 10.1177/10812865211025584
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_10812865211025584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10812865211025584</sage_id><sourcerecordid>10.1177_10812865211025584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-f984c0445138cd50df6b23f1b75462e89f387e3992c9c992342ef3e2e811a93a3</originalsourceid><addsrcrecordid>eNp9UMtOAzEMjBBIlMIHcMsPbMljH9ljVVFAqsQFzqs065RU200Vp634Bb4ao3JD4uKxxx5bHsbupZhJ2TQPUhipTF0pKYWqKlNesIlsSlloocwl5dQvfgau2Q3iVgiaavSEfc35LvbBB-j5Mh5SgMQRCLBYWyQS43DIIY78FPIHD7t9ikeik83Ao-cujkdIGxgdcB8Tz6dY9GEHI5LGDjyBy3bcHAabeMCYU9wHx4cwAhEwWMxU0o3Q4y278nZAuPvFKXtfPr4tnovV69PLYr4qnNJ1LnxrSifKspLauL4Sva_XSnu5bqqyVmBar00Dum2Vax1FXSrwGqgjpW211VMmz3tdiogJfLdPYWfTZydF92Nm98dM0szOGrQb6LZkFD2H_wi-AdRzd1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A modified Fourier series-based solution with improved rate of convergence for two-dimensional rectangular isotropic linear elastic solids</title><source>SAGE Complete</source><creator>Barulich, Néstor Darío ; Deutsch, Aharon ; Eisenberger, Moshe ; Godoy, Luis Augusto ; Dardati, Patricia Mónica</creator><creatorcontrib>Barulich, Néstor Darío ; Deutsch, Aharon ; Eisenberger, Moshe ; Godoy, Luis Augusto ; Dardati, Patricia Mónica</creatorcontrib><description>This paper presents a new displacement solution based on a Modified Fourier Series (MFS) for isotropic linear elastic solids under plane strain or plane stress states subject to continuous displacement and traction boundary conditions in a two-dimensional rectangular domain. In contrast with existing approaches that are restricted to Fourier series with a rate of convergence of second order O(m-2), the MFS allows increasing the rate of convergence of the solution. The governing Partial Differential Equations (PDEs) are satisfied exactly by two displacement solutions while the boundary conditions are approximated after solving a finite system of algebraic equations. Numerical results for a solution with an MFS with rate of convergence O(m-3) are compared with results from existing numerical and analytical methods, showing the enhanced behavior of the present solution.</description><identifier>ISSN: 1081-2865</identifier><identifier>EISSN: 1741-3028</identifier><identifier>DOI: 10.1177/10812865211025584</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Mathematics and mechanics of solids, 2022-03, Vol.27 (3), p.410-432</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-f984c0445138cd50df6b23f1b75462e89f387e3992c9c992342ef3e2e811a93a3</cites><orcidid>0000-0002-4877-5257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/10812865211025584$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/10812865211025584$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Barulich, Néstor Darío</creatorcontrib><creatorcontrib>Deutsch, Aharon</creatorcontrib><creatorcontrib>Eisenberger, Moshe</creatorcontrib><creatorcontrib>Godoy, Luis Augusto</creatorcontrib><creatorcontrib>Dardati, Patricia Mónica</creatorcontrib><title>A modified Fourier series-based solution with improved rate of convergence for two-dimensional rectangular isotropic linear elastic solids</title><title>Mathematics and mechanics of solids</title><description>This paper presents a new displacement solution based on a Modified Fourier Series (MFS) for isotropic linear elastic solids under plane strain or plane stress states subject to continuous displacement and traction boundary conditions in a two-dimensional rectangular domain. In contrast with existing approaches that are restricted to Fourier series with a rate of convergence of second order O(m-2), the MFS allows increasing the rate of convergence of the solution. The governing Partial Differential Equations (PDEs) are satisfied exactly by two displacement solutions while the boundary conditions are approximated after solving a finite system of algebraic equations. Numerical results for a solution with an MFS with rate of convergence O(m-3) are compared with results from existing numerical and analytical methods, showing the enhanced behavior of the present solution.</description><issn>1081-2865</issn><issn>1741-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOAzEMjBBIlMIHcMsPbMljH9ljVVFAqsQFzqs065RU200Vp634Bb4ao3JD4uKxxx5bHsbupZhJ2TQPUhipTF0pKYWqKlNesIlsSlloocwl5dQvfgau2Q3iVgiaavSEfc35LvbBB-j5Mh5SgMQRCLBYWyQS43DIIY78FPIHD7t9ikeik83Ao-cujkdIGxgdcB8Tz6dY9GEHI5LGDjyBy3bcHAabeMCYU9wHx4cwAhEwWMxU0o3Q4y278nZAuPvFKXtfPr4tnovV69PLYr4qnNJ1LnxrSifKspLauL4Sva_XSnu5bqqyVmBar00Dum2Vax1FXSrwGqgjpW211VMmz3tdiogJfLdPYWfTZydF92Nm98dM0szOGrQb6LZkFD2H_wi-AdRzd1o</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Barulich, Néstor Darío</creator><creator>Deutsch, Aharon</creator><creator>Eisenberger, Moshe</creator><creator>Godoy, Luis Augusto</creator><creator>Dardati, Patricia Mónica</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4877-5257</orcidid></search><sort><creationdate>202203</creationdate><title>A modified Fourier series-based solution with improved rate of convergence for two-dimensional rectangular isotropic linear elastic solids</title><author>Barulich, Néstor Darío ; Deutsch, Aharon ; Eisenberger, Moshe ; Godoy, Luis Augusto ; Dardati, Patricia Mónica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-f984c0445138cd50df6b23f1b75462e89f387e3992c9c992342ef3e2e811a93a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barulich, Néstor Darío</creatorcontrib><creatorcontrib>Deutsch, Aharon</creatorcontrib><creatorcontrib>Eisenberger, Moshe</creatorcontrib><creatorcontrib>Godoy, Luis Augusto</creatorcontrib><creatorcontrib>Dardati, Patricia Mónica</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics and mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barulich, Néstor Darío</au><au>Deutsch, Aharon</au><au>Eisenberger, Moshe</au><au>Godoy, Luis Augusto</au><au>Dardati, Patricia Mónica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modified Fourier series-based solution with improved rate of convergence for two-dimensional rectangular isotropic linear elastic solids</atitle><jtitle>Mathematics and mechanics of solids</jtitle><date>2022-03</date><risdate>2022</risdate><volume>27</volume><issue>3</issue><spage>410</spage><epage>432</epage><pages>410-432</pages><issn>1081-2865</issn><eissn>1741-3028</eissn><abstract>This paper presents a new displacement solution based on a Modified Fourier Series (MFS) for isotropic linear elastic solids under plane strain or plane stress states subject to continuous displacement and traction boundary conditions in a two-dimensional rectangular domain. In contrast with existing approaches that are restricted to Fourier series with a rate of convergence of second order O(m-2), the MFS allows increasing the rate of convergence of the solution. The governing Partial Differential Equations (PDEs) are satisfied exactly by two displacement solutions while the boundary conditions are approximated after solving a finite system of algebraic equations. Numerical results for a solution with an MFS with rate of convergence O(m-3) are compared with results from existing numerical and analytical methods, showing the enhanced behavior of the present solution.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/10812865211025584</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-4877-5257</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1081-2865
ispartof Mathematics and mechanics of solids, 2022-03, Vol.27 (3), p.410-432
issn 1081-2865
1741-3028
language eng
recordid cdi_crossref_primary_10_1177_10812865211025584
source SAGE Complete
title A modified Fourier series-based solution with improved rate of convergence for two-dimensional rectangular isotropic linear elastic solids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modified%20Fourier%20series-based%20solution%20with%20improved%20rate%20of%20convergence%20for%20two-dimensional%20rectangular%20isotropic%20linear%20elastic%20solids&rft.jtitle=Mathematics%20and%20mechanics%20of%20solids&rft.au=Barulich,%20N%C3%A9stor%20Dar%C3%ADo&rft.date=2022-03&rft.volume=27&rft.issue=3&rft.spage=410&rft.epage=432&rft.pages=410-432&rft.issn=1081-2865&rft.eissn=1741-3028&rft_id=info:doi/10.1177/10812865211025584&rft_dat=%3Csage_cross%3E10.1177_10812865211025584%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_10812865211025584&rfr_iscdi=true