A modified Fourier series-based solution with improved rate of convergence for two-dimensional rectangular isotropic linear elastic solids
This paper presents a new displacement solution based on a Modified Fourier Series (MFS) for isotropic linear elastic solids under plane strain or plane stress states subject to continuous displacement and traction boundary conditions in a two-dimensional rectangular domain. In contrast with existin...
Gespeichert in:
Veröffentlicht in: | Mathematics and mechanics of solids 2022-03, Vol.27 (3), p.410-432 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 432 |
---|---|
container_issue | 3 |
container_start_page | 410 |
container_title | Mathematics and mechanics of solids |
container_volume | 27 |
creator | Barulich, Néstor Darío Deutsch, Aharon Eisenberger, Moshe Godoy, Luis Augusto Dardati, Patricia Mónica |
description | This paper presents a new displacement solution based on a Modified Fourier Series (MFS) for isotropic linear elastic solids under plane strain or plane stress states subject to continuous displacement and traction boundary conditions in a two-dimensional rectangular domain. In contrast with existing approaches that are restricted to Fourier series with a rate of convergence of second order O(m-2), the MFS allows increasing the rate of convergence of the solution. The governing Partial Differential Equations (PDEs) are satisfied exactly by two displacement solutions while the boundary conditions are approximated after solving a finite system of algebraic equations. Numerical results for a solution with an MFS with rate of convergence O(m-3) are compared with results from existing numerical and analytical methods, showing the enhanced behavior of the present solution. |
doi_str_mv | 10.1177/10812865211025584 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_10812865211025584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10812865211025584</sage_id><sourcerecordid>10.1177_10812865211025584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-f984c0445138cd50df6b23f1b75462e89f387e3992c9c992342ef3e2e811a93a3</originalsourceid><addsrcrecordid>eNp9UMtOAzEMjBBIlMIHcMsPbMljH9ljVVFAqsQFzqs065RU200Vp634Bb4ao3JD4uKxxx5bHsbupZhJ2TQPUhipTF0pKYWqKlNesIlsSlloocwl5dQvfgau2Q3iVgiaavSEfc35LvbBB-j5Mh5SgMQRCLBYWyQS43DIIY78FPIHD7t9ikeik83Ao-cujkdIGxgdcB8Tz6dY9GEHI5LGDjyBy3bcHAabeMCYU9wHx4cwAhEwWMxU0o3Q4y278nZAuPvFKXtfPr4tnovV69PLYr4qnNJ1LnxrSifKspLauL4Sva_XSnu5bqqyVmBar00Dum2Vax1FXSrwGqgjpW211VMmz3tdiogJfLdPYWfTZydF92Nm98dM0szOGrQb6LZkFD2H_wi-AdRzd1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A modified Fourier series-based solution with improved rate of convergence for two-dimensional rectangular isotropic linear elastic solids</title><source>SAGE Complete</source><creator>Barulich, Néstor Darío ; Deutsch, Aharon ; Eisenberger, Moshe ; Godoy, Luis Augusto ; Dardati, Patricia Mónica</creator><creatorcontrib>Barulich, Néstor Darío ; Deutsch, Aharon ; Eisenberger, Moshe ; Godoy, Luis Augusto ; Dardati, Patricia Mónica</creatorcontrib><description>This paper presents a new displacement solution based on a Modified Fourier Series (MFS) for isotropic linear elastic solids under plane strain or plane stress states subject to continuous displacement and traction boundary conditions in a two-dimensional rectangular domain. In contrast with existing approaches that are restricted to Fourier series with a rate of convergence of second order O(m-2), the MFS allows increasing the rate of convergence of the solution. The governing Partial Differential Equations (PDEs) are satisfied exactly by two displacement solutions while the boundary conditions are approximated after solving a finite system of algebraic equations. Numerical results for a solution with an MFS with rate of convergence O(m-3) are compared with results from existing numerical and analytical methods, showing the enhanced behavior of the present solution.</description><identifier>ISSN: 1081-2865</identifier><identifier>EISSN: 1741-3028</identifier><identifier>DOI: 10.1177/10812865211025584</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Mathematics and mechanics of solids, 2022-03, Vol.27 (3), p.410-432</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-f984c0445138cd50df6b23f1b75462e89f387e3992c9c992342ef3e2e811a93a3</cites><orcidid>0000-0002-4877-5257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/10812865211025584$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/10812865211025584$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Barulich, Néstor Darío</creatorcontrib><creatorcontrib>Deutsch, Aharon</creatorcontrib><creatorcontrib>Eisenberger, Moshe</creatorcontrib><creatorcontrib>Godoy, Luis Augusto</creatorcontrib><creatorcontrib>Dardati, Patricia Mónica</creatorcontrib><title>A modified Fourier series-based solution with improved rate of convergence for two-dimensional rectangular isotropic linear elastic solids</title><title>Mathematics and mechanics of solids</title><description>This paper presents a new displacement solution based on a Modified Fourier Series (MFS) for isotropic linear elastic solids under plane strain or plane stress states subject to continuous displacement and traction boundary conditions in a two-dimensional rectangular domain. In contrast with existing approaches that are restricted to Fourier series with a rate of convergence of second order O(m-2), the MFS allows increasing the rate of convergence of the solution. The governing Partial Differential Equations (PDEs) are satisfied exactly by two displacement solutions while the boundary conditions are approximated after solving a finite system of algebraic equations. Numerical results for a solution with an MFS with rate of convergence O(m-3) are compared with results from existing numerical and analytical methods, showing the enhanced behavior of the present solution.</description><issn>1081-2865</issn><issn>1741-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOAzEMjBBIlMIHcMsPbMljH9ljVVFAqsQFzqs065RU200Vp634Bb4ao3JD4uKxxx5bHsbupZhJ2TQPUhipTF0pKYWqKlNesIlsSlloocwl5dQvfgau2Q3iVgiaavSEfc35LvbBB-j5Mh5SgMQRCLBYWyQS43DIIY78FPIHD7t9ikeik83Ao-cujkdIGxgdcB8Tz6dY9GEHI5LGDjyBy3bcHAabeMCYU9wHx4cwAhEwWMxU0o3Q4y278nZAuPvFKXtfPr4tnovV69PLYr4qnNJ1LnxrSifKspLauL4Sva_XSnu5bqqyVmBar00Dum2Vax1FXSrwGqgjpW211VMmz3tdiogJfLdPYWfTZydF92Nm98dM0szOGrQb6LZkFD2H_wi-AdRzd1o</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Barulich, Néstor Darío</creator><creator>Deutsch, Aharon</creator><creator>Eisenberger, Moshe</creator><creator>Godoy, Luis Augusto</creator><creator>Dardati, Patricia Mónica</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4877-5257</orcidid></search><sort><creationdate>202203</creationdate><title>A modified Fourier series-based solution with improved rate of convergence for two-dimensional rectangular isotropic linear elastic solids</title><author>Barulich, Néstor Darío ; Deutsch, Aharon ; Eisenberger, Moshe ; Godoy, Luis Augusto ; Dardati, Patricia Mónica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-f984c0445138cd50df6b23f1b75462e89f387e3992c9c992342ef3e2e811a93a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barulich, Néstor Darío</creatorcontrib><creatorcontrib>Deutsch, Aharon</creatorcontrib><creatorcontrib>Eisenberger, Moshe</creatorcontrib><creatorcontrib>Godoy, Luis Augusto</creatorcontrib><creatorcontrib>Dardati, Patricia Mónica</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics and mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barulich, Néstor Darío</au><au>Deutsch, Aharon</au><au>Eisenberger, Moshe</au><au>Godoy, Luis Augusto</au><au>Dardati, Patricia Mónica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modified Fourier series-based solution with improved rate of convergence for two-dimensional rectangular isotropic linear elastic solids</atitle><jtitle>Mathematics and mechanics of solids</jtitle><date>2022-03</date><risdate>2022</risdate><volume>27</volume><issue>3</issue><spage>410</spage><epage>432</epage><pages>410-432</pages><issn>1081-2865</issn><eissn>1741-3028</eissn><abstract>This paper presents a new displacement solution based on a Modified Fourier Series (MFS) for isotropic linear elastic solids under plane strain or plane stress states subject to continuous displacement and traction boundary conditions in a two-dimensional rectangular domain. In contrast with existing approaches that are restricted to Fourier series with a rate of convergence of second order O(m-2), the MFS allows increasing the rate of convergence of the solution. The governing Partial Differential Equations (PDEs) are satisfied exactly by two displacement solutions while the boundary conditions are approximated after solving a finite system of algebraic equations. Numerical results for a solution with an MFS with rate of convergence O(m-3) are compared with results from existing numerical and analytical methods, showing the enhanced behavior of the present solution.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/10812865211025584</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-4877-5257</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1081-2865 |
ispartof | Mathematics and mechanics of solids, 2022-03, Vol.27 (3), p.410-432 |
issn | 1081-2865 1741-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1177_10812865211025584 |
source | SAGE Complete |
title | A modified Fourier series-based solution with improved rate of convergence for two-dimensional rectangular isotropic linear elastic solids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modified%20Fourier%20series-based%20solution%20with%20improved%20rate%20of%20convergence%20for%20two-dimensional%20rectangular%20isotropic%20linear%20elastic%20solids&rft.jtitle=Mathematics%20and%20mechanics%20of%20solids&rft.au=Barulich,%20N%C3%A9stor%20Dar%C3%ADo&rft.date=2022-03&rft.volume=27&rft.issue=3&rft.spage=410&rft.epage=432&rft.pages=410-432&rft.issn=1081-2865&rft.eissn=1741-3028&rft_id=info:doi/10.1177/10812865211025584&rft_dat=%3Csage_cross%3E10.1177_10812865211025584%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_10812865211025584&rfr_iscdi=true |