Computation of elastic equilibria of complete Möbius bands and their stability

Determining the equilibrium configuration of an elastic Möbius band is a challenging problem. In recent years numerical results have been obtained by other investigators, employing first the Kirchhoff theory of rods and later the developable, ruled-surface model of Sadowsky–Wunderlich. In particular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics and mechanics of solids 2019-04, Vol.24 (4), p.939-967
Hauptverfasser: Moore, Alexander, Healey, Timothy
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 967
container_issue 4
container_start_page 939
container_title Mathematics and mechanics of solids
container_volume 24
creator Moore, Alexander
Healey, Timothy
description Determining the equilibrium configuration of an elastic Möbius band is a challenging problem. In recent years numerical results have been obtained by other investigators, employing first the Kirchhoff theory of rods and later the developable, ruled-surface model of Sadowsky–Wunderlich. In particular, one such strategy used does not deliver an equilibrium configuration for the complete unsupported strip. Here we present our own systematic approach to the same problem for each of these models, with the ultimate goal of assessing the stability of flip-symmetric configurations. The presence of point-wise constraints considerably complicates the latter step. We obtain the first stability results for the problem, numerically demonstrating that such equilibria render the total potential energy a local minimum. Along the way we introduce a novel regularization for the singular Wunderlich model that delivers equilibria for complete strips having sufficiently narrow widths, which can then be tested for stability.
doi_str_mv 10.1177/1081286518761789
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1081286518761789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1081286518761789</sage_id><sourcerecordid>10.1177_1081286518761789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-ae88025e57521c43c151b866f98acc80fac50100bb0b59163a3716030938eba83</originalsourceid><addsrcrecordid>eNp1UEtOwzAQtRBIlMKepS8QmInr2Fmiik-lom5gHY2NA67SpNjOohfjAlwMR2WFxGZmNO-jp8fYNcINolK3CBpLXUnUqkKl6xM2Q7XAQkCpT_Od4WLCz9lFjFsAKKUSM7ZZDrv9mCj5oedDy11HMXnL3efoO2-Cp-lrM6lzyfHn7y_jx8gN9W-R58HTh_OBx0Qm89Phkp211EV39bvn7PXh_mX5VKw3j6vl3bqwohSpIKd1TuCkkiXahbAo0eiqamtN1mpoyUpAAGPAyBorQUJhBQJqoZ0hLeYMjr42DDEG1zb74HcUDg1CMxXS_C0kS4qjJNK7a7bDGPqc8H_-D9cKYIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computation of elastic equilibria of complete Möbius bands and their stability</title><source>Access via SAGE</source><creator>Moore, Alexander ; Healey, Timothy</creator><creatorcontrib>Moore, Alexander ; Healey, Timothy</creatorcontrib><description>Determining the equilibrium configuration of an elastic Möbius band is a challenging problem. In recent years numerical results have been obtained by other investigators, employing first the Kirchhoff theory of rods and later the developable, ruled-surface model of Sadowsky–Wunderlich. In particular, one such strategy used does not deliver an equilibrium configuration for the complete unsupported strip. Here we present our own systematic approach to the same problem for each of these models, with the ultimate goal of assessing the stability of flip-symmetric configurations. The presence of point-wise constraints considerably complicates the latter step. We obtain the first stability results for the problem, numerically demonstrating that such equilibria render the total potential energy a local minimum. Along the way we introduce a novel regularization for the singular Wunderlich model that delivers equilibria for complete strips having sufficiently narrow widths, which can then be tested for stability.</description><identifier>ISSN: 1081-2865</identifier><identifier>EISSN: 1741-3028</identifier><identifier>DOI: 10.1177/1081286518761789</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Mathematics and mechanics of solids, 2019-04, Vol.24 (4), p.939-967</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-ae88025e57521c43c151b866f98acc80fac50100bb0b59163a3716030938eba83</citedby><cites>FETCH-LOGICAL-c323t-ae88025e57521c43c151b866f98acc80fac50100bb0b59163a3716030938eba83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1081286518761789$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1081286518761789$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Moore, Alexander</creatorcontrib><creatorcontrib>Healey, Timothy</creatorcontrib><title>Computation of elastic equilibria of complete Möbius bands and their stability</title><title>Mathematics and mechanics of solids</title><description>Determining the equilibrium configuration of an elastic Möbius band is a challenging problem. In recent years numerical results have been obtained by other investigators, employing first the Kirchhoff theory of rods and later the developable, ruled-surface model of Sadowsky–Wunderlich. In particular, one such strategy used does not deliver an equilibrium configuration for the complete unsupported strip. Here we present our own systematic approach to the same problem for each of these models, with the ultimate goal of assessing the stability of flip-symmetric configurations. The presence of point-wise constraints considerably complicates the latter step. We obtain the first stability results for the problem, numerically demonstrating that such equilibria render the total potential energy a local minimum. Along the way we introduce a novel regularization for the singular Wunderlich model that delivers equilibria for complete strips having sufficiently narrow widths, which can then be tested for stability.</description><issn>1081-2865</issn><issn>1741-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UEtOwzAQtRBIlMKepS8QmInr2Fmiik-lom5gHY2NA67SpNjOohfjAlwMR2WFxGZmNO-jp8fYNcINolK3CBpLXUnUqkKl6xM2Q7XAQkCpT_Od4WLCz9lFjFsAKKUSM7ZZDrv9mCj5oedDy11HMXnL3efoO2-Cp-lrM6lzyfHn7y_jx8gN9W-R58HTh_OBx0Qm89Phkp211EV39bvn7PXh_mX5VKw3j6vl3bqwohSpIKd1TuCkkiXahbAo0eiqamtN1mpoyUpAAGPAyBorQUJhBQJqoZ0hLeYMjr42DDEG1zb74HcUDg1CMxXS_C0kS4qjJNK7a7bDGPqc8H_-D9cKYIw</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Moore, Alexander</creator><creator>Healey, Timothy</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201904</creationdate><title>Computation of elastic equilibria of complete Möbius bands and their stability</title><author>Moore, Alexander ; Healey, Timothy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-ae88025e57521c43c151b866f98acc80fac50100bb0b59163a3716030938eba83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, Alexander</creatorcontrib><creatorcontrib>Healey, Timothy</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics and mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, Alexander</au><au>Healey, Timothy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of elastic equilibria of complete Möbius bands and their stability</atitle><jtitle>Mathematics and mechanics of solids</jtitle><date>2019-04</date><risdate>2019</risdate><volume>24</volume><issue>4</issue><spage>939</spage><epage>967</epage><pages>939-967</pages><issn>1081-2865</issn><eissn>1741-3028</eissn><abstract>Determining the equilibrium configuration of an elastic Möbius band is a challenging problem. In recent years numerical results have been obtained by other investigators, employing first the Kirchhoff theory of rods and later the developable, ruled-surface model of Sadowsky–Wunderlich. In particular, one such strategy used does not deliver an equilibrium configuration for the complete unsupported strip. Here we present our own systematic approach to the same problem for each of these models, with the ultimate goal of assessing the stability of flip-symmetric configurations. The presence of point-wise constraints considerably complicates the latter step. We obtain the first stability results for the problem, numerically demonstrating that such equilibria render the total potential energy a local minimum. Along the way we introduce a novel regularization for the singular Wunderlich model that delivers equilibria for complete strips having sufficiently narrow widths, which can then be tested for stability.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1081286518761789</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1081-2865
ispartof Mathematics and mechanics of solids, 2019-04, Vol.24 (4), p.939-967
issn 1081-2865
1741-3028
language eng
recordid cdi_crossref_primary_10_1177_1081286518761789
source Access via SAGE
title Computation of elastic equilibria of complete Möbius bands and their stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20elastic%20equilibria%20of%20complete%20M%C3%B6bius%20bands%20and%20their%20stability&rft.jtitle=Mathematics%20and%20mechanics%20of%20solids&rft.au=Moore,%20Alexander&rft.date=2019-04&rft.volume=24&rft.issue=4&rft.spage=939&rft.epage=967&rft.pages=939-967&rft.issn=1081-2865&rft.eissn=1741-3028&rft_id=info:doi/10.1177/1081286518761789&rft_dat=%3Csage_cross%3E10.1177_1081286518761789%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1081286518761789&rfr_iscdi=true