Stability of anisotropic, naturally straight, helical elastic thin rods

There has been a differential-geometric interpretation which associates each elastic thin rod with a curve on the three-dimensional unit sphere equipped with a Riemannian metric related to the bending and twisting stiffnesses of the rod. In this paper, we exploit this interpretation to study the sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics and mechanics of solids 2017-11, Vol.22 (11), p.2108-2119
Hauptverfasser: Cheng, Yi-Chien, Feng, Shih-Tsai, Hu, Kai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2119
container_issue 11
container_start_page 2108
container_title Mathematics and mechanics of solids
container_volume 22
creator Cheng, Yi-Chien
Feng, Shih-Tsai
Hu, Kai
description There has been a differential-geometric interpretation which associates each elastic thin rod with a curve on the three-dimensional unit sphere equipped with a Riemannian metric related to the bending and twisting stiffnesses of the rod. In this paper, we exploit this interpretation to study the stability of anisotropic, naturally straight, helical equilibrium rods with clamped ends. Such a rod is called geodesic here if its associated curve is a geodesic, or equivalently, its twisting stiffness equals one of the bending stiffnesses. We establish criteria for geodesic equilibria to be stable and possibly unstable separately, and develop a scheme predicting unstable non-geodesic equilibria. We also present an example to emphasize the necessity of examining whether a helical equilibrium rod is geodesic or not when one is concerned with its stability.
doi_str_mv 10.1177/1081286516657856
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1081286516657856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1081286516657856</sage_id><sourcerecordid>10.1177_1081286516657856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-308503abc0e446b36bee64da8399e9803d528677b0c219355258fe79ea15aa373</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKt7l_kBHc1j8pilFK1CwYW6Hu5kMp2UOClJuph_b0pdCa7OhXPP4eMgdE_JA6VKPVKiKdNSUCmF0kJeoAVVNa04Yfqy3MWuTv41uklpTwhhQvEF2nxk6Jx3ecZhwDC5FHIMB2dWeIJ8jOD9jFOO4HZjXuHRemfAY-shZWdwHt2EY-jTLboawCd796tL9PXy_Ll-rbbvm7f107YyTNNcaLQgHDpDbF3LjsvOWln3oHnT2EYT3osCqVRHDKMNF4IJPVjVWKACgCu-ROTca2JIKdqhPUT3DXFuKWlPQ7R_hyiR6hxJsLPtPhzjVAj___8BswFdCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability of anisotropic, naturally straight, helical elastic thin rods</title><source>SAGE Complete A-Z List</source><creator>Cheng, Yi-Chien ; Feng, Shih-Tsai ; Hu, Kai</creator><creatorcontrib>Cheng, Yi-Chien ; Feng, Shih-Tsai ; Hu, Kai</creatorcontrib><description>There has been a differential-geometric interpretation which associates each elastic thin rod with a curve on the three-dimensional unit sphere equipped with a Riemannian metric related to the bending and twisting stiffnesses of the rod. In this paper, we exploit this interpretation to study the stability of anisotropic, naturally straight, helical equilibrium rods with clamped ends. Such a rod is called geodesic here if its associated curve is a geodesic, or equivalently, its twisting stiffness equals one of the bending stiffnesses. We establish criteria for geodesic equilibria to be stable and possibly unstable separately, and develop a scheme predicting unstable non-geodesic equilibria. We also present an example to emphasize the necessity of examining whether a helical equilibrium rod is geodesic or not when one is concerned with its stability.</description><identifier>ISSN: 1081-2865</identifier><identifier>EISSN: 1741-3028</identifier><identifier>DOI: 10.1177/1081286516657856</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Mathematics and mechanics of solids, 2017-11, Vol.22 (11), p.2108-2119</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-308503abc0e446b36bee64da8399e9803d528677b0c219355258fe79ea15aa373</citedby><cites>FETCH-LOGICAL-c281t-308503abc0e446b36bee64da8399e9803d528677b0c219355258fe79ea15aa373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1081286516657856$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1081286516657856$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21810,27915,27916,43612,43613</link.rule.ids></links><search><creatorcontrib>Cheng, Yi-Chien</creatorcontrib><creatorcontrib>Feng, Shih-Tsai</creatorcontrib><creatorcontrib>Hu, Kai</creatorcontrib><title>Stability of anisotropic, naturally straight, helical elastic thin rods</title><title>Mathematics and mechanics of solids</title><description>There has been a differential-geometric interpretation which associates each elastic thin rod with a curve on the three-dimensional unit sphere equipped with a Riemannian metric related to the bending and twisting stiffnesses of the rod. In this paper, we exploit this interpretation to study the stability of anisotropic, naturally straight, helical equilibrium rods with clamped ends. Such a rod is called geodesic here if its associated curve is a geodesic, or equivalently, its twisting stiffness equals one of the bending stiffnesses. We establish criteria for geodesic equilibria to be stable and possibly unstable separately, and develop a scheme predicting unstable non-geodesic equilibria. We also present an example to emphasize the necessity of examining whether a helical equilibrium rod is geodesic or not when one is concerned with its stability.</description><issn>1081-2865</issn><issn>1741-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKt7l_kBHc1j8pilFK1CwYW6Hu5kMp2UOClJuph_b0pdCa7OhXPP4eMgdE_JA6VKPVKiKdNSUCmF0kJeoAVVNa04Yfqy3MWuTv41uklpTwhhQvEF2nxk6Jx3ecZhwDC5FHIMB2dWeIJ8jOD9jFOO4HZjXuHRemfAY-shZWdwHt2EY-jTLboawCd796tL9PXy_Ll-rbbvm7f107YyTNNcaLQgHDpDbF3LjsvOWln3oHnT2EYT3osCqVRHDKMNF4IJPVjVWKACgCu-ROTca2JIKdqhPUT3DXFuKWlPQ7R_hyiR6hxJsLPtPhzjVAj___8BswFdCg</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Cheng, Yi-Chien</creator><creator>Feng, Shih-Tsai</creator><creator>Hu, Kai</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201711</creationdate><title>Stability of anisotropic, naturally straight, helical elastic thin rods</title><author>Cheng, Yi-Chien ; Feng, Shih-Tsai ; Hu, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-308503abc0e446b36bee64da8399e9803d528677b0c219355258fe79ea15aa373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yi-Chien</creatorcontrib><creatorcontrib>Feng, Shih-Tsai</creatorcontrib><creatorcontrib>Hu, Kai</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics and mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yi-Chien</au><au>Feng, Shih-Tsai</au><au>Hu, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of anisotropic, naturally straight, helical elastic thin rods</atitle><jtitle>Mathematics and mechanics of solids</jtitle><date>2017-11</date><risdate>2017</risdate><volume>22</volume><issue>11</issue><spage>2108</spage><epage>2119</epage><pages>2108-2119</pages><issn>1081-2865</issn><eissn>1741-3028</eissn><abstract>There has been a differential-geometric interpretation which associates each elastic thin rod with a curve on the three-dimensional unit sphere equipped with a Riemannian metric related to the bending and twisting stiffnesses of the rod. In this paper, we exploit this interpretation to study the stability of anisotropic, naturally straight, helical equilibrium rods with clamped ends. Such a rod is called geodesic here if its associated curve is a geodesic, or equivalently, its twisting stiffness equals one of the bending stiffnesses. We establish criteria for geodesic equilibria to be stable and possibly unstable separately, and develop a scheme predicting unstable non-geodesic equilibria. We also present an example to emphasize the necessity of examining whether a helical equilibrium rod is geodesic or not when one is concerned with its stability.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1081286516657856</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1081-2865
ispartof Mathematics and mechanics of solids, 2017-11, Vol.22 (11), p.2108-2119
issn 1081-2865
1741-3028
language eng
recordid cdi_crossref_primary_10_1177_1081286516657856
source SAGE Complete A-Z List
title Stability of anisotropic, naturally straight, helical elastic thin rods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A26%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20anisotropic,%20naturally%20straight,%20helical%20elastic%20thin%20rods&rft.jtitle=Mathematics%20and%20mechanics%20of%20solids&rft.au=Cheng,%20Yi-Chien&rft.date=2017-11&rft.volume=22&rft.issue=11&rft.spage=2108&rft.epage=2119&rft.pages=2108-2119&rft.issn=1081-2865&rft.eissn=1741-3028&rft_id=info:doi/10.1177/1081286516657856&rft_dat=%3Csage_cross%3E10.1177_1081286516657856%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1081286516657856&rfr_iscdi=true