A mobile platform app to assist learning human kinematics in undergraduate biomechanics courses

Biomechanics examines different physical characteristics of the human body movement by applying principles of Newtonian mechanics to physical activities. Therefore, undergraduate biomechanics courses are highly demanding in mathematics and physics. While the inclusion of laboratory experiences can a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2022-09, Vol.66 (1), p.475-479
Hauptverfasser: Wang, Hanwen, Lu, Lu, Xie Bingyi Su, Ziyang, Edward P., Xu Xu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue 1
container_start_page 475
container_title Proceedings of the Human Factors and Ergonomics Society Annual Meeting
container_volume 66
creator Wang, Hanwen
Lu, Lu
Xie Bingyi Su, Ziyang
Edward P., Xu Xu
description Biomechanics examines different physical characteristics of the human body movement by applying principles of Newtonian mechanics to physical activities. Therefore, undergraduate biomechanics courses are highly demanding in mathematics and physics. While the inclusion of laboratory experiences can augment student comprehension of biomechanics concepts, the cost and the required expertise associated with motion tracking systems can be a burden of offering laboratory sessions. In this study, we developed a mobile platform app to facilitate learning human kinematics in biomechanics courses. An optimized computer-vision model that is based on convolutional pose machine (CPM), MobileNet V2 and TensorFlow Lite frameworks is adopted to reconstruct human pose first. A real-time human kinematics analysis then allows students to conduct human motion experiments. The proposed app can serve as a potential instructional tool in biomechanics courses.
doi_str_mv 10.1177/1071181322661058
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1071181322661058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1071181322661058</sage_id><sourcerecordid>10.1177_1071181322661058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1268-d3dde9fe29fb075d7cb25fda869d9450071a5b75b98d5f4ecbff9acddee6decf3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw5-gXCNhOHcfHquKnUiUucI7W9rp1SZzITg68PanKASFx2pV2v9HMEHLP2QPnSj1ypjiveSlEVXEm6wuyELzShWSVuvy1X5ObnI-MiVKVqwVp1rTrTWiRDi2Mvk8dhWGgY08h55BH2iKkGOKeHqYOIv0METsYg800RDpFh2mfwE0wIjWh79AeIJ6utp9SxnxLrjy0Ge9-5pJ8PD-9b16L3dvLdrPeFZaLqi5c6Rxqj0J7w5R0yhohvYO60k6vJJvDgTRKGl076Vdojfca7Axh5dD6cknYWdemPueEvhlS6CB9NZw1p4KavwXNSHFGMuyxOc5-4-zw__9vL5Boug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A mobile platform app to assist learning human kinematics in undergraduate biomechanics courses</title><source>SAGE Complete A-Z List</source><creator>Wang, Hanwen ; Lu, Lu ; Xie Bingyi Su, Ziyang ; Edward P., Xu Xu</creator><creatorcontrib>Wang, Hanwen ; Lu, Lu ; Xie Bingyi Su, Ziyang ; Edward P., Xu Xu</creatorcontrib><description>Biomechanics examines different physical characteristics of the human body movement by applying principles of Newtonian mechanics to physical activities. Therefore, undergraduate biomechanics courses are highly demanding in mathematics and physics. While the inclusion of laboratory experiences can augment student comprehension of biomechanics concepts, the cost and the required expertise associated with motion tracking systems can be a burden of offering laboratory sessions. In this study, we developed a mobile platform app to facilitate learning human kinematics in biomechanics courses. An optimized computer-vision model that is based on convolutional pose machine (CPM), MobileNet V2 and TensorFlow Lite frameworks is adopted to reconstruct human pose first. A real-time human kinematics analysis then allows students to conduct human motion experiments. The proposed app can serve as a potential instructional tool in biomechanics courses.</description><identifier>ISSN: 2169-5067</identifier><identifier>ISSN: 1071-1813</identifier><identifier>EISSN: 2169-5067</identifier><identifier>DOI: 10.1177/1071181322661058</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2022-09, Vol.66 (1), p.475-479</ispartof><rights>2022 by Human Factors and Ergonomics Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1268-d3dde9fe29fb075d7cb25fda869d9450071a5b75b98d5f4ecbff9acddee6decf3</citedby><cites>FETCH-LOGICAL-c1268-d3dde9fe29fb075d7cb25fda869d9450071a5b75b98d5f4ecbff9acddee6decf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1071181322661058$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1071181322661058$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,778,782,21806,27911,27912,43608,43609</link.rule.ids></links><search><creatorcontrib>Wang, Hanwen</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Xie Bingyi Su, Ziyang</creatorcontrib><creatorcontrib>Edward P., Xu Xu</creatorcontrib><title>A mobile platform app to assist learning human kinematics in undergraduate biomechanics courses</title><title>Proceedings of the Human Factors and Ergonomics Society Annual Meeting</title><description>Biomechanics examines different physical characteristics of the human body movement by applying principles of Newtonian mechanics to physical activities. Therefore, undergraduate biomechanics courses are highly demanding in mathematics and physics. While the inclusion of laboratory experiences can augment student comprehension of biomechanics concepts, the cost and the required expertise associated with motion tracking systems can be a burden of offering laboratory sessions. In this study, we developed a mobile platform app to facilitate learning human kinematics in biomechanics courses. An optimized computer-vision model that is based on convolutional pose machine (CPM), MobileNet V2 and TensorFlow Lite frameworks is adopted to reconstruct human pose first. A real-time human kinematics analysis then allows students to conduct human motion experiments. The proposed app can serve as a potential instructional tool in biomechanics courses.</description><issn>2169-5067</issn><issn>1071-1813</issn><issn>2169-5067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw5-gXCNhOHcfHquKnUiUucI7W9rp1SZzITg68PanKASFx2pV2v9HMEHLP2QPnSj1ypjiveSlEVXEm6wuyELzShWSVuvy1X5ObnI-MiVKVqwVp1rTrTWiRDi2Mvk8dhWGgY08h55BH2iKkGOKeHqYOIv0METsYg800RDpFh2mfwE0wIjWh79AeIJ6utp9SxnxLrjy0Ge9-5pJ8PD-9b16L3dvLdrPeFZaLqi5c6Rxqj0J7w5R0yhohvYO60k6vJJvDgTRKGl076Vdojfca7Axh5dD6cknYWdemPueEvhlS6CB9NZw1p4KavwXNSHFGMuyxOc5-4-zw__9vL5Boug</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Wang, Hanwen</creator><creator>Lu, Lu</creator><creator>Xie Bingyi Su, Ziyang</creator><creator>Edward P., Xu Xu</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202209</creationdate><title>A mobile platform app to assist learning human kinematics in undergraduate biomechanics courses</title><author>Wang, Hanwen ; Lu, Lu ; Xie Bingyi Su, Ziyang ; Edward P., Xu Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1268-d3dde9fe29fb075d7cb25fda869d9450071a5b75b98d5f4ecbff9acddee6decf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hanwen</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Xie Bingyi Su, Ziyang</creatorcontrib><creatorcontrib>Edward P., Xu Xu</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Human Factors and Ergonomics Society Annual Meeting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hanwen</au><au>Lu, Lu</au><au>Xie Bingyi Su, Ziyang</au><au>Edward P., Xu Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mobile platform app to assist learning human kinematics in undergraduate biomechanics courses</atitle><jtitle>Proceedings of the Human Factors and Ergonomics Society Annual Meeting</jtitle><date>2022-09</date><risdate>2022</risdate><volume>66</volume><issue>1</issue><spage>475</spage><epage>479</epage><pages>475-479</pages><issn>2169-5067</issn><issn>1071-1813</issn><eissn>2169-5067</eissn><abstract>Biomechanics examines different physical characteristics of the human body movement by applying principles of Newtonian mechanics to physical activities. Therefore, undergraduate biomechanics courses are highly demanding in mathematics and physics. While the inclusion of laboratory experiences can augment student comprehension of biomechanics concepts, the cost and the required expertise associated with motion tracking systems can be a burden of offering laboratory sessions. In this study, we developed a mobile platform app to facilitate learning human kinematics in biomechanics courses. An optimized computer-vision model that is based on convolutional pose machine (CPM), MobileNet V2 and TensorFlow Lite frameworks is adopted to reconstruct human pose first. A real-time human kinematics analysis then allows students to conduct human motion experiments. The proposed app can serve as a potential instructional tool in biomechanics courses.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/1071181322661058</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2169-5067
ispartof Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2022-09, Vol.66 (1), p.475-479
issn 2169-5067
1071-1813
2169-5067
language eng
recordid cdi_crossref_primary_10_1177_1071181322661058
source SAGE Complete A-Z List
title A mobile platform app to assist learning human kinematics in undergraduate biomechanics courses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mobile%20platform%20app%20to%20assist%20learning%20human%20kinematics%20in%20undergraduate%20biomechanics%20courses&rft.jtitle=Proceedings%20of%20the%20Human%20Factors%20and%20Ergonomics%20Society%20Annual%20Meeting&rft.au=Wang,%20Hanwen&rft.date=2022-09&rft.volume=66&rft.issue=1&rft.spage=475&rft.epage=479&rft.pages=475-479&rft.issn=2169-5067&rft.eissn=2169-5067&rft_id=info:doi/10.1177/1071181322661058&rft_dat=%3Csage_cross%3E10.1177_1071181322661058%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1071181322661058&rfr_iscdi=true