A mobile platform app to assist learning human kinematics in undergraduate biomechanics courses
Biomechanics examines different physical characteristics of the human body movement by applying principles of Newtonian mechanics to physical activities. Therefore, undergraduate biomechanics courses are highly demanding in mathematics and physics. While the inclusion of laboratory experiences can a...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2022-09, Vol.66 (1), p.475-479 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 479 |
---|---|
container_issue | 1 |
container_start_page | 475 |
container_title | Proceedings of the Human Factors and Ergonomics Society Annual Meeting |
container_volume | 66 |
creator | Wang, Hanwen Lu, Lu Xie Bingyi Su, Ziyang Edward P., Xu Xu |
description | Biomechanics examines different physical characteristics of the human body movement by applying principles of Newtonian mechanics to physical activities. Therefore, undergraduate biomechanics courses are highly demanding in mathematics and physics. While the inclusion of laboratory experiences can augment student comprehension of biomechanics concepts, the cost and the required expertise associated with motion tracking systems can be a burden of offering laboratory sessions. In this study, we developed a mobile platform app to facilitate learning human kinematics in biomechanics courses. An optimized computer-vision model that is based on convolutional pose machine (CPM), MobileNet V2 and TensorFlow Lite frameworks is adopted to reconstruct human pose first. A real-time human kinematics analysis then allows students to conduct human motion experiments. The proposed app can serve as a potential instructional tool in biomechanics courses. |
doi_str_mv | 10.1177/1071181322661058 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1071181322661058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1071181322661058</sage_id><sourcerecordid>10.1177_1071181322661058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1268-d3dde9fe29fb075d7cb25fda869d9450071a5b75b98d5f4ecbff9acddee6decf3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw5-gXCNhOHcfHquKnUiUucI7W9rp1SZzITg68PanKASFx2pV2v9HMEHLP2QPnSj1ypjiveSlEVXEm6wuyELzShWSVuvy1X5ObnI-MiVKVqwVp1rTrTWiRDi2Mvk8dhWGgY08h55BH2iKkGOKeHqYOIv0METsYg800RDpFh2mfwE0wIjWh79AeIJ6utp9SxnxLrjy0Ge9-5pJ8PD-9b16L3dvLdrPeFZaLqi5c6Rxqj0J7w5R0yhohvYO60k6vJJvDgTRKGl076Vdojfca7Axh5dD6cknYWdemPueEvhlS6CB9NZw1p4KavwXNSHFGMuyxOc5-4-zw__9vL5Boug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A mobile platform app to assist learning human kinematics in undergraduate biomechanics courses</title><source>SAGE Complete A-Z List</source><creator>Wang, Hanwen ; Lu, Lu ; Xie Bingyi Su, Ziyang ; Edward P., Xu Xu</creator><creatorcontrib>Wang, Hanwen ; Lu, Lu ; Xie Bingyi Su, Ziyang ; Edward P., Xu Xu</creatorcontrib><description>Biomechanics examines different physical characteristics of the human body movement by applying principles of Newtonian mechanics to physical activities. Therefore, undergraduate biomechanics courses are highly demanding in mathematics and physics. While the inclusion of laboratory experiences can augment student comprehension of biomechanics concepts, the cost and the required expertise associated with motion tracking systems can be a burden of offering laboratory sessions. In this study, we developed a mobile platform app to facilitate learning human kinematics in biomechanics courses. An optimized computer-vision model that is based on convolutional pose machine (CPM), MobileNet V2 and TensorFlow Lite frameworks is adopted to reconstruct human pose first. A real-time human kinematics analysis then allows students to conduct human motion experiments. The proposed app can serve as a potential instructional tool in biomechanics courses.</description><identifier>ISSN: 2169-5067</identifier><identifier>ISSN: 1071-1813</identifier><identifier>EISSN: 2169-5067</identifier><identifier>DOI: 10.1177/1071181322661058</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2022-09, Vol.66 (1), p.475-479</ispartof><rights>2022 by Human Factors and Ergonomics Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1268-d3dde9fe29fb075d7cb25fda869d9450071a5b75b98d5f4ecbff9acddee6decf3</citedby><cites>FETCH-LOGICAL-c1268-d3dde9fe29fb075d7cb25fda869d9450071a5b75b98d5f4ecbff9acddee6decf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1071181322661058$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1071181322661058$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,778,782,21806,27911,27912,43608,43609</link.rule.ids></links><search><creatorcontrib>Wang, Hanwen</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Xie Bingyi Su, Ziyang</creatorcontrib><creatorcontrib>Edward P., Xu Xu</creatorcontrib><title>A mobile platform app to assist learning human kinematics in undergraduate biomechanics courses</title><title>Proceedings of the Human Factors and Ergonomics Society Annual Meeting</title><description>Biomechanics examines different physical characteristics of the human body movement by applying principles of Newtonian mechanics to physical activities. Therefore, undergraduate biomechanics courses are highly demanding in mathematics and physics. While the inclusion of laboratory experiences can augment student comprehension of biomechanics concepts, the cost and the required expertise associated with motion tracking systems can be a burden of offering laboratory sessions. In this study, we developed a mobile platform app to facilitate learning human kinematics in biomechanics courses. An optimized computer-vision model that is based on convolutional pose machine (CPM), MobileNet V2 and TensorFlow Lite frameworks is adopted to reconstruct human pose first. A real-time human kinematics analysis then allows students to conduct human motion experiments. The proposed app can serve as a potential instructional tool in biomechanics courses.</description><issn>2169-5067</issn><issn>1071-1813</issn><issn>2169-5067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw5-gXCNhOHcfHquKnUiUucI7W9rp1SZzITg68PanKASFx2pV2v9HMEHLP2QPnSj1ypjiveSlEVXEm6wuyELzShWSVuvy1X5ObnI-MiVKVqwVp1rTrTWiRDi2Mvk8dhWGgY08h55BH2iKkGOKeHqYOIv0METsYg800RDpFh2mfwE0wIjWh79AeIJ6utp9SxnxLrjy0Ge9-5pJ8PD-9b16L3dvLdrPeFZaLqi5c6Rxqj0J7w5R0yhohvYO60k6vJJvDgTRKGl076Vdojfca7Axh5dD6cknYWdemPueEvhlS6CB9NZw1p4KavwXNSHFGMuyxOc5-4-zw__9vL5Boug</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Wang, Hanwen</creator><creator>Lu, Lu</creator><creator>Xie Bingyi Su, Ziyang</creator><creator>Edward P., Xu Xu</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202209</creationdate><title>A mobile platform app to assist learning human kinematics in undergraduate biomechanics courses</title><author>Wang, Hanwen ; Lu, Lu ; Xie Bingyi Su, Ziyang ; Edward P., Xu Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1268-d3dde9fe29fb075d7cb25fda869d9450071a5b75b98d5f4ecbff9acddee6decf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hanwen</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Xie Bingyi Su, Ziyang</creatorcontrib><creatorcontrib>Edward P., Xu Xu</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Human Factors and Ergonomics Society Annual Meeting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hanwen</au><au>Lu, Lu</au><au>Xie Bingyi Su, Ziyang</au><au>Edward P., Xu Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mobile platform app to assist learning human kinematics in undergraduate biomechanics courses</atitle><jtitle>Proceedings of the Human Factors and Ergonomics Society Annual Meeting</jtitle><date>2022-09</date><risdate>2022</risdate><volume>66</volume><issue>1</issue><spage>475</spage><epage>479</epage><pages>475-479</pages><issn>2169-5067</issn><issn>1071-1813</issn><eissn>2169-5067</eissn><abstract>Biomechanics examines different physical characteristics of the human body movement by applying principles of Newtonian mechanics to physical activities. Therefore, undergraduate biomechanics courses are highly demanding in mathematics and physics. While the inclusion of laboratory experiences can augment student comprehension of biomechanics concepts, the cost and the required expertise associated with motion tracking systems can be a burden of offering laboratory sessions. In this study, we developed a mobile platform app to facilitate learning human kinematics in biomechanics courses. An optimized computer-vision model that is based on convolutional pose machine (CPM), MobileNet V2 and TensorFlow Lite frameworks is adopted to reconstruct human pose first. A real-time human kinematics analysis then allows students to conduct human motion experiments. The proposed app can serve as a potential instructional tool in biomechanics courses.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/1071181322661058</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-5067 |
ispartof | Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2022-09, Vol.66 (1), p.475-479 |
issn | 2169-5067 1071-1813 2169-5067 |
language | eng |
recordid | cdi_crossref_primary_10_1177_1071181322661058 |
source | SAGE Complete A-Z List |
title | A mobile platform app to assist learning human kinematics in undergraduate biomechanics courses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mobile%20platform%20app%20to%20assist%20learning%20human%20kinematics%20in%20undergraduate%20biomechanics%20courses&rft.jtitle=Proceedings%20of%20the%20Human%20Factors%20and%20Ergonomics%20Society%20Annual%20Meeting&rft.au=Wang,%20Hanwen&rft.date=2022-09&rft.volume=66&rft.issue=1&rft.spage=475&rft.epage=479&rft.pages=475-479&rft.issn=2169-5067&rft.eissn=2169-5067&rft_id=info:doi/10.1177/1071181322661058&rft_dat=%3Csage_cross%3E10.1177_1071181322661058%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1071181322661058&rfr_iscdi=true |