Micromechanics-based damage model for liquid-assisted healing

This work presents a damage evolution framework including liquid-assisted healing. The model incorporates contributions from void size, void pressure, surface tension and liquid pressure. Experimental motivation for the damage-healing model is provided with in-situ melting experiments, where the evo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of damage mechanics 2021-01, Vol.30 (1), p.123-144
Hauptverfasser: Siroky, Georg, Kraker, Elke, Kieslinger, Dietmar, Kozeschnik, Ernst, Ecker, Werner
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 1
container_start_page 123
container_title International journal of damage mechanics
container_volume 30
creator Siroky, Georg
Kraker, Elke
Kieslinger, Dietmar
Kozeschnik, Ernst
Ecker, Werner
description This work presents a damage evolution framework including liquid-assisted healing. The model incorporates contributions from void size, void pressure, surface tension and liquid pressure. Experimental motivation for the damage-healing model is provided with in-situ melting experiments, where the evolution of the void distribution under monotonic tension is illustrated. The damage evolution is based on nucleation and growth of voids, which are modeled in a unified creep and plasticity framework. The proposed damage formulation introduces a void collective, which computes the void distribution in the material and allows to describe void collapse using the Rayleigh-Plesset equation. The necessary conditions for healing are discussed with use of model results. Particularly, the role of external load during healing, the dependence on liquid viscosity and surface tension are investigated.
doi_str_mv 10.1177/1056789520948561
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1056789520948561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1056789520948561</sage_id><sourcerecordid>10.1177_1056789520948561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-e2f62e1dda34e0c15743ce6805c0b6a48e445aec8631558850c41a473ba083683</originalsourceid><addsrcrecordid>eNp1jztPw0AQhE8IJEKgp_QfONj1PXwuKFDESwqigdpan9fJRXYMd0nBv-eiUCFR7Ugzs5pPiGuEG8SqukUwtnK1KaHWzlg8ETM0CmRVl3iadbblwT8XFyltANCVtZuJu9fg4zSyX9M2-CRbStwVHY204mKcOh6KforFEL72oZOUUki7HFgzDWG7uhRnPQ2Jr37vXHw8PrwvnuXy7ellcb-UvnS4k1z2tmTsOlKawaOptPJsHRgPrSXtWGtD7J1VaIxzBrxG0pVqCZyyTs0FHP_mrSlF7pvPGEaK3w1Cc8Bv_uLnijxWUiZpNtM-bvPC__M_XPRZWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Micromechanics-based damage model for liquid-assisted healing</title><source>SAGE Journals</source><creator>Siroky, Georg ; Kraker, Elke ; Kieslinger, Dietmar ; Kozeschnik, Ernst ; Ecker, Werner</creator><creatorcontrib>Siroky, Georg ; Kraker, Elke ; Kieslinger, Dietmar ; Kozeschnik, Ernst ; Ecker, Werner</creatorcontrib><description>This work presents a damage evolution framework including liquid-assisted healing. The model incorporates contributions from void size, void pressure, surface tension and liquid pressure. Experimental motivation for the damage-healing model is provided with in-situ melting experiments, where the evolution of the void distribution under monotonic tension is illustrated. The damage evolution is based on nucleation and growth of voids, which are modeled in a unified creep and plasticity framework. The proposed damage formulation introduces a void collective, which computes the void distribution in the material and allows to describe void collapse using the Rayleigh-Plesset equation. The necessary conditions for healing are discussed with use of model results. Particularly, the role of external load during healing, the dependence on liquid viscosity and surface tension are investigated.</description><identifier>ISSN: 1056-7895</identifier><identifier>EISSN: 1530-7921</identifier><identifier>DOI: 10.1177/1056789520948561</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>International journal of damage mechanics, 2021-01, Vol.30 (1), p.123-144</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-e2f62e1dda34e0c15743ce6805c0b6a48e445aec8631558850c41a473ba083683</citedby><cites>FETCH-LOGICAL-c281t-e2f62e1dda34e0c15743ce6805c0b6a48e445aec8631558850c41a473ba083683</cites><orcidid>0000-0001-5851-0888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1056789520948561$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1056789520948561$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Siroky, Georg</creatorcontrib><creatorcontrib>Kraker, Elke</creatorcontrib><creatorcontrib>Kieslinger, Dietmar</creatorcontrib><creatorcontrib>Kozeschnik, Ernst</creatorcontrib><creatorcontrib>Ecker, Werner</creatorcontrib><title>Micromechanics-based damage model for liquid-assisted healing</title><title>International journal of damage mechanics</title><description>This work presents a damage evolution framework including liquid-assisted healing. The model incorporates contributions from void size, void pressure, surface tension and liquid pressure. Experimental motivation for the damage-healing model is provided with in-situ melting experiments, where the evolution of the void distribution under monotonic tension is illustrated. The damage evolution is based on nucleation and growth of voids, which are modeled in a unified creep and plasticity framework. The proposed damage formulation introduces a void collective, which computes the void distribution in the material and allows to describe void collapse using the Rayleigh-Plesset equation. The necessary conditions for healing are discussed with use of model results. Particularly, the role of external load during healing, the dependence on liquid viscosity and surface tension are investigated.</description><issn>1056-7895</issn><issn>1530-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1jztPw0AQhE8IJEKgp_QfONj1PXwuKFDESwqigdpan9fJRXYMd0nBv-eiUCFR7Ugzs5pPiGuEG8SqukUwtnK1KaHWzlg8ETM0CmRVl3iadbblwT8XFyltANCVtZuJu9fg4zSyX9M2-CRbStwVHY204mKcOh6KforFEL72oZOUUki7HFgzDWG7uhRnPQ2Jr37vXHw8PrwvnuXy7ellcb-UvnS4k1z2tmTsOlKawaOptPJsHRgPrSXtWGtD7J1VaIxzBrxG0pVqCZyyTs0FHP_mrSlF7pvPGEaK3w1Cc8Bv_uLnijxWUiZpNtM-bvPC__M_XPRZWA</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Siroky, Georg</creator><creator>Kraker, Elke</creator><creator>Kieslinger, Dietmar</creator><creator>Kozeschnik, Ernst</creator><creator>Ecker, Werner</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5851-0888</orcidid></search><sort><creationdate>202101</creationdate><title>Micromechanics-based damage model for liquid-assisted healing</title><author>Siroky, Georg ; Kraker, Elke ; Kieslinger, Dietmar ; Kozeschnik, Ernst ; Ecker, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-e2f62e1dda34e0c15743ce6805c0b6a48e445aec8631558850c41a473ba083683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siroky, Georg</creatorcontrib><creatorcontrib>Kraker, Elke</creatorcontrib><creatorcontrib>Kieslinger, Dietmar</creatorcontrib><creatorcontrib>Kozeschnik, Ernst</creatorcontrib><creatorcontrib>Ecker, Werner</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of damage mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siroky, Georg</au><au>Kraker, Elke</au><au>Kieslinger, Dietmar</au><au>Kozeschnik, Ernst</au><au>Ecker, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanics-based damage model for liquid-assisted healing</atitle><jtitle>International journal of damage mechanics</jtitle><date>2021-01</date><risdate>2021</risdate><volume>30</volume><issue>1</issue><spage>123</spage><epage>144</epage><pages>123-144</pages><issn>1056-7895</issn><eissn>1530-7921</eissn><abstract>This work presents a damage evolution framework including liquid-assisted healing. The model incorporates contributions from void size, void pressure, surface tension and liquid pressure. Experimental motivation for the damage-healing model is provided with in-situ melting experiments, where the evolution of the void distribution under monotonic tension is illustrated. The damage evolution is based on nucleation and growth of voids, which are modeled in a unified creep and plasticity framework. The proposed damage formulation introduces a void collective, which computes the void distribution in the material and allows to describe void collapse using the Rayleigh-Plesset equation. The necessary conditions for healing are discussed with use of model results. Particularly, the role of external load during healing, the dependence on liquid viscosity and surface tension are investigated.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1056789520948561</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-5851-0888</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1056-7895
ispartof International journal of damage mechanics, 2021-01, Vol.30 (1), p.123-144
issn 1056-7895
1530-7921
language eng
recordid cdi_crossref_primary_10_1177_1056789520948561
source SAGE Journals
title Micromechanics-based damage model for liquid-assisted healing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A21%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanics-based%20damage%20model%20for%20liquid-assisted%20healing&rft.jtitle=International%20journal%20of%20damage%20mechanics&rft.au=Siroky,%20Georg&rft.date=2021-01&rft.volume=30&rft.issue=1&rft.spage=123&rft.epage=144&rft.pages=123-144&rft.issn=1056-7895&rft.eissn=1530-7921&rft_id=info:doi/10.1177/1056789520948561&rft_dat=%3Csage_cross%3E10.1177_1056789520948561%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1056789520948561&rfr_iscdi=true