Micromechanics-based damage model for liquid-assisted healing
This work presents a damage evolution framework including liquid-assisted healing. The model incorporates contributions from void size, void pressure, surface tension and liquid pressure. Experimental motivation for the damage-healing model is provided with in-situ melting experiments, where the evo...
Gespeichert in:
Veröffentlicht in: | International journal of damage mechanics 2021-01, Vol.30 (1), p.123-144 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144 |
---|---|
container_issue | 1 |
container_start_page | 123 |
container_title | International journal of damage mechanics |
container_volume | 30 |
creator | Siroky, Georg Kraker, Elke Kieslinger, Dietmar Kozeschnik, Ernst Ecker, Werner |
description | This work presents a damage evolution framework including liquid-assisted healing. The model incorporates contributions from void size, void pressure, surface tension and liquid pressure. Experimental motivation for the damage-healing model is provided with in-situ melting experiments, where the evolution of the void distribution under monotonic tension is illustrated. The damage evolution is based on nucleation and growth of voids, which are modeled in a unified creep and plasticity framework. The proposed damage formulation introduces a void collective, which computes the void distribution in the material and allows to describe void collapse using the Rayleigh-Plesset equation. The necessary conditions for healing are discussed with use of model results. Particularly, the role of external load during healing, the dependence on liquid viscosity and surface tension are investigated. |
doi_str_mv | 10.1177/1056789520948561 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1056789520948561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1056789520948561</sage_id><sourcerecordid>10.1177_1056789520948561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-e2f62e1dda34e0c15743ce6805c0b6a48e445aec8631558850c41a473ba083683</originalsourceid><addsrcrecordid>eNp1jztPw0AQhE8IJEKgp_QfONj1PXwuKFDESwqigdpan9fJRXYMd0nBv-eiUCFR7Ugzs5pPiGuEG8SqukUwtnK1KaHWzlg8ETM0CmRVl3iadbblwT8XFyltANCVtZuJu9fg4zSyX9M2-CRbStwVHY204mKcOh6KforFEL72oZOUUki7HFgzDWG7uhRnPQ2Jr37vXHw8PrwvnuXy7ellcb-UvnS4k1z2tmTsOlKawaOptPJsHRgPrSXtWGtD7J1VaIxzBrxG0pVqCZyyTs0FHP_mrSlF7pvPGEaK3w1Cc8Bv_uLnijxWUiZpNtM-bvPC__M_XPRZWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Micromechanics-based damage model for liquid-assisted healing</title><source>SAGE Journals</source><creator>Siroky, Georg ; Kraker, Elke ; Kieslinger, Dietmar ; Kozeschnik, Ernst ; Ecker, Werner</creator><creatorcontrib>Siroky, Georg ; Kraker, Elke ; Kieslinger, Dietmar ; Kozeschnik, Ernst ; Ecker, Werner</creatorcontrib><description>This work presents a damage evolution framework including liquid-assisted healing. The model incorporates contributions from void size, void pressure, surface tension and liquid pressure. Experimental motivation for the damage-healing model is provided with in-situ melting experiments, where the evolution of the void distribution under monotonic tension is illustrated. The damage evolution is based on nucleation and growth of voids, which are modeled in a unified creep and plasticity framework. The proposed damage formulation introduces a void collective, which computes the void distribution in the material and allows to describe void collapse using the Rayleigh-Plesset equation. The necessary conditions for healing are discussed with use of model results. Particularly, the role of external load during healing, the dependence on liquid viscosity and surface tension are investigated.</description><identifier>ISSN: 1056-7895</identifier><identifier>EISSN: 1530-7921</identifier><identifier>DOI: 10.1177/1056789520948561</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>International journal of damage mechanics, 2021-01, Vol.30 (1), p.123-144</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-e2f62e1dda34e0c15743ce6805c0b6a48e445aec8631558850c41a473ba083683</citedby><cites>FETCH-LOGICAL-c281t-e2f62e1dda34e0c15743ce6805c0b6a48e445aec8631558850c41a473ba083683</cites><orcidid>0000-0001-5851-0888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1056789520948561$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1056789520948561$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Siroky, Georg</creatorcontrib><creatorcontrib>Kraker, Elke</creatorcontrib><creatorcontrib>Kieslinger, Dietmar</creatorcontrib><creatorcontrib>Kozeschnik, Ernst</creatorcontrib><creatorcontrib>Ecker, Werner</creatorcontrib><title>Micromechanics-based damage model for liquid-assisted healing</title><title>International journal of damage mechanics</title><description>This work presents a damage evolution framework including liquid-assisted healing. The model incorporates contributions from void size, void pressure, surface tension and liquid pressure. Experimental motivation for the damage-healing model is provided with in-situ melting experiments, where the evolution of the void distribution under monotonic tension is illustrated. The damage evolution is based on nucleation and growth of voids, which are modeled in a unified creep and plasticity framework. The proposed damage formulation introduces a void collective, which computes the void distribution in the material and allows to describe void collapse using the Rayleigh-Plesset equation. The necessary conditions for healing are discussed with use of model results. Particularly, the role of external load during healing, the dependence on liquid viscosity and surface tension are investigated.</description><issn>1056-7895</issn><issn>1530-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1jztPw0AQhE8IJEKgp_QfONj1PXwuKFDESwqigdpan9fJRXYMd0nBv-eiUCFR7Ugzs5pPiGuEG8SqukUwtnK1KaHWzlg8ETM0CmRVl3iadbblwT8XFyltANCVtZuJu9fg4zSyX9M2-CRbStwVHY204mKcOh6KforFEL72oZOUUki7HFgzDWG7uhRnPQ2Jr37vXHw8PrwvnuXy7ellcb-UvnS4k1z2tmTsOlKawaOptPJsHRgPrSXtWGtD7J1VaIxzBrxG0pVqCZyyTs0FHP_mrSlF7pvPGEaK3w1Cc8Bv_uLnijxWUiZpNtM-bvPC__M_XPRZWA</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Siroky, Georg</creator><creator>Kraker, Elke</creator><creator>Kieslinger, Dietmar</creator><creator>Kozeschnik, Ernst</creator><creator>Ecker, Werner</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5851-0888</orcidid></search><sort><creationdate>202101</creationdate><title>Micromechanics-based damage model for liquid-assisted healing</title><author>Siroky, Georg ; Kraker, Elke ; Kieslinger, Dietmar ; Kozeschnik, Ernst ; Ecker, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-e2f62e1dda34e0c15743ce6805c0b6a48e445aec8631558850c41a473ba083683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siroky, Georg</creatorcontrib><creatorcontrib>Kraker, Elke</creatorcontrib><creatorcontrib>Kieslinger, Dietmar</creatorcontrib><creatorcontrib>Kozeschnik, Ernst</creatorcontrib><creatorcontrib>Ecker, Werner</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of damage mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siroky, Georg</au><au>Kraker, Elke</au><au>Kieslinger, Dietmar</au><au>Kozeschnik, Ernst</au><au>Ecker, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanics-based damage model for liquid-assisted healing</atitle><jtitle>International journal of damage mechanics</jtitle><date>2021-01</date><risdate>2021</risdate><volume>30</volume><issue>1</issue><spage>123</spage><epage>144</epage><pages>123-144</pages><issn>1056-7895</issn><eissn>1530-7921</eissn><abstract>This work presents a damage evolution framework including liquid-assisted healing. The model incorporates contributions from void size, void pressure, surface tension and liquid pressure. Experimental motivation for the damage-healing model is provided with in-situ melting experiments, where the evolution of the void distribution under monotonic tension is illustrated. The damage evolution is based on nucleation and growth of voids, which are modeled in a unified creep and plasticity framework. The proposed damage formulation introduces a void collective, which computes the void distribution in the material and allows to describe void collapse using the Rayleigh-Plesset equation. The necessary conditions for healing are discussed with use of model results. Particularly, the role of external load during healing, the dependence on liquid viscosity and surface tension are investigated.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1056789520948561</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-5851-0888</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1056-7895 |
ispartof | International journal of damage mechanics, 2021-01, Vol.30 (1), p.123-144 |
issn | 1056-7895 1530-7921 |
language | eng |
recordid | cdi_crossref_primary_10_1177_1056789520948561 |
source | SAGE Journals |
title | Micromechanics-based damage model for liquid-assisted healing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A21%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanics-based%20damage%20model%20for%20liquid-assisted%20healing&rft.jtitle=International%20journal%20of%20damage%20mechanics&rft.au=Siroky,%20Georg&rft.date=2021-01&rft.volume=30&rft.issue=1&rft.spage=123&rft.epage=144&rft.pages=123-144&rft.issn=1056-7895&rft.eissn=1530-7921&rft_id=info:doi/10.1177/1056789520948561&rft_dat=%3Csage_cross%3E10.1177_1056789520948561%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1056789520948561&rfr_iscdi=true |