Uncertainty analysis of galloping based piezoelectric energy harvester system using polynomial neural network

This paper deals with the impact of uncertain input parameters on the electrical power generation of galloping-based piezoelectric energy harvester (GPEH). A distributed parameter model for the system is derived and solved by using Newmark beta numerical integration technique. Nonlinear systems tend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent material systems and structures 2022-09, Vol.33 (16), p.2019-2032
Hauptverfasser: Dash, Rakesha Chandra, Sharma, Narayan, Maiti, Dipak Kumar, Singh, Bhrigu Nath
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2032
container_issue 16
container_start_page 2019
container_title Journal of intelligent material systems and structures
container_volume 33
creator Dash, Rakesha Chandra
Sharma, Narayan
Maiti, Dipak Kumar
Singh, Bhrigu Nath
description This paper deals with the impact of uncertain input parameters on the electrical power generation of galloping-based piezoelectric energy harvester (GPEH). A distributed parameter model for the system is derived and solved by using Newmark beta numerical integration technique. Nonlinear systems tend to behave in a completely different manner in response to a slight change in input parameters. Due to the complex manufacturing process and various technical defects, randomness in system properties is inevitable. Owing to the presence of randomness within the system parameters, the actual power output differs from the expected one. Therefore, stochastic analysis is performed considering uncertainty in aerodynamic, mechanical, and electrical parameters. A polynomial neural network (PNN) based surrogate model is used to analyze the stochastic power output. A sensitivity analysis is conducted and highly influenced parameters to the electric power output are identified. The accuracy and adaptability of the PNN model are established by comparing the results with Monte Carlo simulation (MCS). Further, the stochastic analyses of power output are performed for various degrees of randomness and wind velocities. The obtained results showed that the influence of the electromechanical coefficient on power output is more compared to other parameters.
doi_str_mv 10.1177/1045389X211072519
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1045389X211072519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1045389X211072519</sage_id><sourcerecordid>10.1177_1045389X211072519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-f61b0bbc9a3da6ef5c84f394be7a921fba4e84a6768220babd56ad2139f25d113</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-AG_5A10zST_Soyx-wYIXF7yVSTupXdumJF2l_nq7rjfB0xuYeXN4jF2DWAFk2Q2IOFE6f5UAIpMJ5CdsAYkSkQalT-d53keHg3N2EcJOCNCJUAvWbfuS_IhNP04ce2yn0ATuLK-xbd3Q9DU3GKjiQ0NfjloqR9-UnHry9cTf0H9QGMnzMM3o-D4cjMG1U--6Blve097_YPx0_v2SnVlsA139csm293cv68do8_zwtL7dRKXU8RjZFIwwpsxRVZiSTUodW5XHhjLMJViDMekY0yzVUgqDpkpSrCSo3MqkAlBLBse_pXcheLLF4JsO_VSAKA69ij-9Zmd1dALWVOzc3s81wj_CN4fNbyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uncertainty analysis of galloping based piezoelectric energy harvester system using polynomial neural network</title><source>SAGE Complete</source><creator>Dash, Rakesha Chandra ; Sharma, Narayan ; Maiti, Dipak Kumar ; Singh, Bhrigu Nath</creator><creatorcontrib>Dash, Rakesha Chandra ; Sharma, Narayan ; Maiti, Dipak Kumar ; Singh, Bhrigu Nath</creatorcontrib><description>This paper deals with the impact of uncertain input parameters on the electrical power generation of galloping-based piezoelectric energy harvester (GPEH). A distributed parameter model for the system is derived and solved by using Newmark beta numerical integration technique. Nonlinear systems tend to behave in a completely different manner in response to a slight change in input parameters. Due to the complex manufacturing process and various technical defects, randomness in system properties is inevitable. Owing to the presence of randomness within the system parameters, the actual power output differs from the expected one. Therefore, stochastic analysis is performed considering uncertainty in aerodynamic, mechanical, and electrical parameters. A polynomial neural network (PNN) based surrogate model is used to analyze the stochastic power output. A sensitivity analysis is conducted and highly influenced parameters to the electric power output are identified. The accuracy and adaptability of the PNN model are established by comparing the results with Monte Carlo simulation (MCS). Further, the stochastic analyses of power output are performed for various degrees of randomness and wind velocities. The obtained results showed that the influence of the electromechanical coefficient on power output is more compared to other parameters.</description><identifier>ISSN: 1045-389X</identifier><identifier>EISSN: 1530-8138</identifier><identifier>DOI: 10.1177/1045389X211072519</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Journal of intelligent material systems and structures, 2022-09, Vol.33 (16), p.2019-2032</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-f61b0bbc9a3da6ef5c84f394be7a921fba4e84a6768220babd56ad2139f25d113</citedby><cites>FETCH-LOGICAL-c284t-f61b0bbc9a3da6ef5c84f394be7a921fba4e84a6768220babd56ad2139f25d113</cites><orcidid>0000-0001-5035-2926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1045389X211072519$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1045389X211072519$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21817,27922,27923,43619,43620</link.rule.ids></links><search><creatorcontrib>Dash, Rakesha Chandra</creatorcontrib><creatorcontrib>Sharma, Narayan</creatorcontrib><creatorcontrib>Maiti, Dipak Kumar</creatorcontrib><creatorcontrib>Singh, Bhrigu Nath</creatorcontrib><title>Uncertainty analysis of galloping based piezoelectric energy harvester system using polynomial neural network</title><title>Journal of intelligent material systems and structures</title><description>This paper deals with the impact of uncertain input parameters on the electrical power generation of galloping-based piezoelectric energy harvester (GPEH). A distributed parameter model for the system is derived and solved by using Newmark beta numerical integration technique. Nonlinear systems tend to behave in a completely different manner in response to a slight change in input parameters. Due to the complex manufacturing process and various technical defects, randomness in system properties is inevitable. Owing to the presence of randomness within the system parameters, the actual power output differs from the expected one. Therefore, stochastic analysis is performed considering uncertainty in aerodynamic, mechanical, and electrical parameters. A polynomial neural network (PNN) based surrogate model is used to analyze the stochastic power output. A sensitivity analysis is conducted and highly influenced parameters to the electric power output are identified. The accuracy and adaptability of the PNN model are established by comparing the results with Monte Carlo simulation (MCS). Further, the stochastic analyses of power output are performed for various degrees of randomness and wind velocities. The obtained results showed that the influence of the electromechanical coefficient on power output is more compared to other parameters.</description><issn>1045-389X</issn><issn>1530-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMouK7-AG_5A10zST_Soyx-wYIXF7yVSTupXdumJF2l_nq7rjfB0xuYeXN4jF2DWAFk2Q2IOFE6f5UAIpMJ5CdsAYkSkQalT-d53keHg3N2EcJOCNCJUAvWbfuS_IhNP04ce2yn0ATuLK-xbd3Q9DU3GKjiQ0NfjloqR9-UnHry9cTf0H9QGMnzMM3o-D4cjMG1U--6Blve097_YPx0_v2SnVlsA139csm293cv68do8_zwtL7dRKXU8RjZFIwwpsxRVZiSTUodW5XHhjLMJViDMekY0yzVUgqDpkpSrCSo3MqkAlBLBse_pXcheLLF4JsO_VSAKA69ij-9Zmd1dALWVOzc3s81wj_CN4fNbyc</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Dash, Rakesha Chandra</creator><creator>Sharma, Narayan</creator><creator>Maiti, Dipak Kumar</creator><creator>Singh, Bhrigu Nath</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5035-2926</orcidid></search><sort><creationdate>20220901</creationdate><title>Uncertainty analysis of galloping based piezoelectric energy harvester system using polynomial neural network</title><author>Dash, Rakesha Chandra ; Sharma, Narayan ; Maiti, Dipak Kumar ; Singh, Bhrigu Nath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-f61b0bbc9a3da6ef5c84f394be7a921fba4e84a6768220babd56ad2139f25d113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dash, Rakesha Chandra</creatorcontrib><creatorcontrib>Sharma, Narayan</creatorcontrib><creatorcontrib>Maiti, Dipak Kumar</creatorcontrib><creatorcontrib>Singh, Bhrigu Nath</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of intelligent material systems and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dash, Rakesha Chandra</au><au>Sharma, Narayan</au><au>Maiti, Dipak Kumar</au><au>Singh, Bhrigu Nath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty analysis of galloping based piezoelectric energy harvester system using polynomial neural network</atitle><jtitle>Journal of intelligent material systems and structures</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>33</volume><issue>16</issue><spage>2019</spage><epage>2032</epage><pages>2019-2032</pages><issn>1045-389X</issn><eissn>1530-8138</eissn><abstract>This paper deals with the impact of uncertain input parameters on the electrical power generation of galloping-based piezoelectric energy harvester (GPEH). A distributed parameter model for the system is derived and solved by using Newmark beta numerical integration technique. Nonlinear systems tend to behave in a completely different manner in response to a slight change in input parameters. Due to the complex manufacturing process and various technical defects, randomness in system properties is inevitable. Owing to the presence of randomness within the system parameters, the actual power output differs from the expected one. Therefore, stochastic analysis is performed considering uncertainty in aerodynamic, mechanical, and electrical parameters. A polynomial neural network (PNN) based surrogate model is used to analyze the stochastic power output. A sensitivity analysis is conducted and highly influenced parameters to the electric power output are identified. The accuracy and adaptability of the PNN model are established by comparing the results with Monte Carlo simulation (MCS). Further, the stochastic analyses of power output are performed for various degrees of randomness and wind velocities. The obtained results showed that the influence of the electromechanical coefficient on power output is more compared to other parameters.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1045389X211072519</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5035-2926</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1045-389X
ispartof Journal of intelligent material systems and structures, 2022-09, Vol.33 (16), p.2019-2032
issn 1045-389X
1530-8138
language eng
recordid cdi_crossref_primary_10_1177_1045389X211072519
source SAGE Complete
title Uncertainty analysis of galloping based piezoelectric energy harvester system using polynomial neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20analysis%20of%20galloping%20based%20piezoelectric%20energy%20harvester%20system%20using%20polynomial%20neural%20network&rft.jtitle=Journal%20of%20intelligent%20material%20systems%20and%20structures&rft.au=Dash,%20Rakesha%20Chandra&rft.date=2022-09-01&rft.volume=33&rft.issue=16&rft.spage=2019&rft.epage=2032&rft.pages=2019-2032&rft.issn=1045-389X&rft.eissn=1530-8138&rft_id=info:doi/10.1177/1045389X211072519&rft_dat=%3Csage_cross%3E10.1177_1045389X211072519%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1045389X211072519&rfr_iscdi=true