Elman neural network–based identification of rate-dependent hysteresis in piezoelectric actuators
Rate-dependent hysteresis nonlinearity in piezoelectric actuators severely limits micro- and nanoscale system performance. It is necessary to establish a dynamic model to describe the full behavior of rate-dependent hysteresis. In this article, the Elman neural network–based hysteresis model is deve...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent material systems and structures 2020-04, Vol.31 (7), p.980-989, Article 1045389 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rate-dependent hysteresis nonlinearity in piezoelectric actuators severely limits micro- and nanoscale system performance. It is necessary to establish a dynamic model to describe the full behavior of rate-dependent hysteresis. In this article, the Elman neural network–based hysteresis model is developed for piezoelectric actuators. An improved dynamic hysteretic operator is proposed to transform the multi-valued mapping of hysteresis into one-to-one mapping on a newly constructed expanded input space. Then, Elman neural network incorporated with the improved dynamic hysteretic operator is utilized to approximate the behavior of rate-dependent hysteresis. The combination of Elman neural network and the improved dynamic hysteretic operator can dually embody the dynamic property and is capable of fully extracting the characteristics of rate-dependent hysteresis. The experimental results are presented to illustrate the potential of the proposed modeling technique. |
---|---|
ISSN: | 1045-389X 1530-8138 |
DOI: | 10.1177/1045389X20905987 |