Elman neural network–based identification of rate-dependent hysteresis in piezoelectric actuators

Rate-dependent hysteresis nonlinearity in piezoelectric actuators severely limits micro- and nanoscale system performance. It is necessary to establish a dynamic model to describe the full behavior of rate-dependent hysteresis. In this article, the Elman neural network–based hysteresis model is deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent material systems and structures 2020-04, Vol.31 (7), p.980-989, Article 1045389
Hauptverfasser: Zhao, Xinlong, Shen, Shuai, Su, Liangcai, Yin, Xiuxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rate-dependent hysteresis nonlinearity in piezoelectric actuators severely limits micro- and nanoscale system performance. It is necessary to establish a dynamic model to describe the full behavior of rate-dependent hysteresis. In this article, the Elman neural network–based hysteresis model is developed for piezoelectric actuators. An improved dynamic hysteretic operator is proposed to transform the multi-valued mapping of hysteresis into one-to-one mapping on a newly constructed expanded input space. Then, Elman neural network incorporated with the improved dynamic hysteretic operator is utilized to approximate the behavior of rate-dependent hysteresis. The combination of Elman neural network and the improved dynamic hysteretic operator can dually embody the dynamic property and is capable of fully extracting the characteristics of rate-dependent hysteresis. The experimental results are presented to illustrate the potential of the proposed modeling technique.
ISSN:1045-389X
1530-8138
DOI:10.1177/1045389X20905987