Parametric structural modelling of fish bone active camber morphing aerofoils

Camber morphing aerofoils have the potential to significantly improve the efficiency of fixed and rotary wing aircraft by providing significant lift control authority to a wing, at a lower drag penalty than traditional plain flaps. A rapid, mesh-independent and two-dimensional analytical model of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent material systems and structures 2018-05, Vol.29 (9), p.2008-2026
Hauptverfasser: Rivero, Andres E, Weaver, Paul M, Cooper, Jonathan E, Woods, Benjamin KS
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2026
container_issue 9
container_start_page 2008
container_title Journal of intelligent material systems and structures
container_volume 29
creator Rivero, Andres E
Weaver, Paul M
Cooper, Jonathan E
Woods, Benjamin KS
description Camber morphing aerofoils have the potential to significantly improve the efficiency of fixed and rotary wing aircraft by providing significant lift control authority to a wing, at a lower drag penalty than traditional plain flaps. A rapid, mesh-independent and two-dimensional analytical model of the fish bone active camber concept is presented. Existing structural models of this concept are one-dimensional and isotropic and therefore unable to capture either material anisotropy or spanwise variations in loading/deformation. The proposed model addresses these shortcomings by being able to analyse composite laminates and solve for static two-dimensional displacement fields. Kirchhoff–Love plate theory, along with the Rayleigh–Ritz method, are used to capture the complex and variable stiffness nature of the fish bone active camber concept in a single system of linear equations. Results show errors between 0.5% and 8% for static deflections under representative uniform pressure loadings and applied actuation moments (except when transverse shear exists), compared to finite element method. The robustness, mesh-independence and analytical nature of this model, combined with a modular, parameter-driven geometry definition, facilitate a fast and automated analysis of a wide range of fish bone active camber concept configurations. This analytical model is therefore a powerful tool for use in trade studies, fluid–structure interaction and design optimisation.
doi_str_mv 10.1177/1045389X18758182
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1045389X18758182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1045389X18758182</sage_id><sourcerecordid>10.1177_1045389X18758182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-202e2ffb2e34ad911ba56ce748ee8b2b13c71dfdc190c1642ef361052906b50a3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK7ePeYLVGeSpk2PsvgPVvSg4K0k6WS3S7tZklbw29uyngRPb-D93vB4jF0j3CCW5S1CrqSuPlGXSqMWJ2yBSkKmUerT6Z7sbPbP2UVKOwDUCuSCvbyZaHoaYut4GuLohjGajvehoa5r9xsePPdt2nIb9sSNG9ov4s70luIExcN2ZgzF4EPbpUt25k2X6OpXl-zj4f599ZStXx-fV3frzEkhh0yAIOG9FSRz01SI1qjCUZlrIm2FRelKbHzjsAKHRS7IywJBiQoKq8DIJYPjXxdDSpF8fYhtb-J3jVDPc9R_55gi2TGSzIbqXRjjfmr4P_8Dg9Zg4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parametric structural modelling of fish bone active camber morphing aerofoils</title><source>SAGE Journals</source><creator>Rivero, Andres E ; Weaver, Paul M ; Cooper, Jonathan E ; Woods, Benjamin KS</creator><creatorcontrib>Rivero, Andres E ; Weaver, Paul M ; Cooper, Jonathan E ; Woods, Benjamin KS</creatorcontrib><description>Camber morphing aerofoils have the potential to significantly improve the efficiency of fixed and rotary wing aircraft by providing significant lift control authority to a wing, at a lower drag penalty than traditional plain flaps. A rapid, mesh-independent and two-dimensional analytical model of the fish bone active camber concept is presented. Existing structural models of this concept are one-dimensional and isotropic and therefore unable to capture either material anisotropy or spanwise variations in loading/deformation. The proposed model addresses these shortcomings by being able to analyse composite laminates and solve for static two-dimensional displacement fields. Kirchhoff–Love plate theory, along with the Rayleigh–Ritz method, are used to capture the complex and variable stiffness nature of the fish bone active camber concept in a single system of linear equations. Results show errors between 0.5% and 8% for static deflections under representative uniform pressure loadings and applied actuation moments (except when transverse shear exists), compared to finite element method. The robustness, mesh-independence and analytical nature of this model, combined with a modular, parameter-driven geometry definition, facilitate a fast and automated analysis of a wide range of fish bone active camber concept configurations. This analytical model is therefore a powerful tool for use in trade studies, fluid–structure interaction and design optimisation.</description><identifier>ISSN: 1045-389X</identifier><identifier>EISSN: 1530-8138</identifier><identifier>DOI: 10.1177/1045389X18758182</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Journal of intelligent material systems and structures, 2018-05, Vol.29 (9), p.2008-2026</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-202e2ffb2e34ad911ba56ce748ee8b2b13c71dfdc190c1642ef361052906b50a3</citedby><cites>FETCH-LOGICAL-c323t-202e2ffb2e34ad911ba56ce748ee8b2b13c71dfdc190c1642ef361052906b50a3</cites><orcidid>0000-0002-4806-7357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1045389X18758182$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1045389X18758182$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Rivero, Andres E</creatorcontrib><creatorcontrib>Weaver, Paul M</creatorcontrib><creatorcontrib>Cooper, Jonathan E</creatorcontrib><creatorcontrib>Woods, Benjamin KS</creatorcontrib><title>Parametric structural modelling of fish bone active camber morphing aerofoils</title><title>Journal of intelligent material systems and structures</title><description>Camber morphing aerofoils have the potential to significantly improve the efficiency of fixed and rotary wing aircraft by providing significant lift control authority to a wing, at a lower drag penalty than traditional plain flaps. A rapid, mesh-independent and two-dimensional analytical model of the fish bone active camber concept is presented. Existing structural models of this concept are one-dimensional and isotropic and therefore unable to capture either material anisotropy or spanwise variations in loading/deformation. The proposed model addresses these shortcomings by being able to analyse composite laminates and solve for static two-dimensional displacement fields. Kirchhoff–Love plate theory, along with the Rayleigh–Ritz method, are used to capture the complex and variable stiffness nature of the fish bone active camber concept in a single system of linear equations. Results show errors between 0.5% and 8% for static deflections under representative uniform pressure loadings and applied actuation moments (except when transverse shear exists), compared to finite element method. The robustness, mesh-independence and analytical nature of this model, combined with a modular, parameter-driven geometry definition, facilitate a fast and automated analysis of a wide range of fish bone active camber concept configurations. This analytical model is therefore a powerful tool for use in trade studies, fluid–structure interaction and design optimisation.</description><issn>1045-389X</issn><issn>1530-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1kE9LxDAQxYMouK7ePeYLVGeSpk2PsvgPVvSg4K0k6WS3S7tZklbw29uyngRPb-D93vB4jF0j3CCW5S1CrqSuPlGXSqMWJ2yBSkKmUerT6Z7sbPbP2UVKOwDUCuSCvbyZaHoaYut4GuLohjGajvehoa5r9xsePPdt2nIb9sSNG9ov4s70luIExcN2ZgzF4EPbpUt25k2X6OpXl-zj4f599ZStXx-fV3frzEkhh0yAIOG9FSRz01SI1qjCUZlrIm2FRelKbHzjsAKHRS7IywJBiQoKq8DIJYPjXxdDSpF8fYhtb-J3jVDPc9R_55gi2TGSzIbqXRjjfmr4P_8Dg9Zg4g</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Rivero, Andres E</creator><creator>Weaver, Paul M</creator><creator>Cooper, Jonathan E</creator><creator>Woods, Benjamin KS</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4806-7357</orcidid></search><sort><creationdate>201805</creationdate><title>Parametric structural modelling of fish bone active camber morphing aerofoils</title><author>Rivero, Andres E ; Weaver, Paul M ; Cooper, Jonathan E ; Woods, Benjamin KS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-202e2ffb2e34ad911ba56ce748ee8b2b13c71dfdc190c1642ef361052906b50a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivero, Andres E</creatorcontrib><creatorcontrib>Weaver, Paul M</creatorcontrib><creatorcontrib>Cooper, Jonathan E</creatorcontrib><creatorcontrib>Woods, Benjamin KS</creatorcontrib><collection>SAGE Open Access</collection><collection>CrossRef</collection><jtitle>Journal of intelligent material systems and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivero, Andres E</au><au>Weaver, Paul M</au><au>Cooper, Jonathan E</au><au>Woods, Benjamin KS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric structural modelling of fish bone active camber morphing aerofoils</atitle><jtitle>Journal of intelligent material systems and structures</jtitle><date>2018-05</date><risdate>2018</risdate><volume>29</volume><issue>9</issue><spage>2008</spage><epage>2026</epage><pages>2008-2026</pages><issn>1045-389X</issn><eissn>1530-8138</eissn><abstract>Camber morphing aerofoils have the potential to significantly improve the efficiency of fixed and rotary wing aircraft by providing significant lift control authority to a wing, at a lower drag penalty than traditional plain flaps. A rapid, mesh-independent and two-dimensional analytical model of the fish bone active camber concept is presented. Existing structural models of this concept are one-dimensional and isotropic and therefore unable to capture either material anisotropy or spanwise variations in loading/deformation. The proposed model addresses these shortcomings by being able to analyse composite laminates and solve for static two-dimensional displacement fields. Kirchhoff–Love plate theory, along with the Rayleigh–Ritz method, are used to capture the complex and variable stiffness nature of the fish bone active camber concept in a single system of linear equations. Results show errors between 0.5% and 8% for static deflections under representative uniform pressure loadings and applied actuation moments (except when transverse shear exists), compared to finite element method. The robustness, mesh-independence and analytical nature of this model, combined with a modular, parameter-driven geometry definition, facilitate a fast and automated analysis of a wide range of fish bone active camber concept configurations. This analytical model is therefore a powerful tool for use in trade studies, fluid–structure interaction and design optimisation.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1045389X18758182</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4806-7357</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1045-389X
ispartof Journal of intelligent material systems and structures, 2018-05, Vol.29 (9), p.2008-2026
issn 1045-389X
1530-8138
language eng
recordid cdi_crossref_primary_10_1177_1045389X18758182
source SAGE Journals
title Parametric structural modelling of fish bone active camber morphing aerofoils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20structural%20modelling%20of%20fish%20bone%20active%20camber%20morphing%20aerofoils&rft.jtitle=Journal%20of%20intelligent%20material%20systems%20and%20structures&rft.au=Rivero,%20Andres%20E&rft.date=2018-05&rft.volume=29&rft.issue=9&rft.spage=2008&rft.epage=2026&rft.pages=2008-2026&rft.issn=1045-389X&rft.eissn=1530-8138&rft_id=info:doi/10.1177/1045389X18758182&rft_dat=%3Csage_cross%3E10.1177_1045389X18758182%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1045389X18758182&rfr_iscdi=true