A novel model-based approach for resistance estimation using rise time and sensorless position control of sub-millimetre shape memory alloy helical spring actuator

Shape memory alloy shows considerable strain during heating and cooling. This effect is due to its phase transformation with temperature. Due to this property, shape memory alloys can be deployed for physical actuation in place of conventional actuators in bio-medical and bio-mimicking robots. Sub-m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent material systems and structures 2018-04, Vol.29 (6), p.1050-1064
Hauptverfasser: Sreekanth, M, Mathew, Abraham T, Vijayakumar, R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1064
container_issue 6
container_start_page 1050
container_title Journal of intelligent material systems and structures
container_volume 29
creator Sreekanth, M
Mathew, Abraham T
Vijayakumar, R
description Shape memory alloy shows considerable strain during heating and cooling. This effect is due to its phase transformation with temperature. Due to this property, shape memory alloys can be deployed for physical actuation in place of conventional actuators in bio-medical and bio-mimicking robots. Sub-millimetre diameter shape memory alloy wires wound as helical springs are also used for this purpose. Due to their small size, it is difficult to use sensors for temperature or displacement measurements of shape memory alloy springs. This article attempts to demonstrate that the rise time of the current through a sub-millimetre diameter shape memory alloy helical spring is directly proportional to its displacement. To characterize the rise time–displacement hysteresis, a constant current drive with overcurrent protection is developed. The data generated are utilized to implement an open-loop sensorless control. A method to estimate the resistance from the rise time is proposed with which the temperature of the shape memory alloy during actuation can be obtained. The design avoids using an analogue-to-digital converter for the direct measurement of voltage and current for measuring the resistance variation in the shape memory alloy under actuation. This helps in the development of a new sensorless control using only the digital Input/Output pins of a microcontroller/microprocessor.
doi_str_mv 10.1177/1045389X17730911
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1045389X17730911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1045389X17730911</sage_id><sourcerecordid>10.1177_1045389X17730911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-63bd0d23198eea39a31e512bad0295d352c54562daa2be4b57580b34ffc5f4dd3</originalsourceid><addsrcrecordid>eNp1UE1Lw0AQDaJgrd49zh-I7mazbXIsxS8oeFHwFia7k3bLJht2EqG_xz9qaj0JnuYx74PHS5JbKe6kXC7vpci1KsqPCStRSnmWzKRWIi2kKs4nPNHpkb9Mrpj3QshCCzVLvlbQhU_y0AZLPq2RyQL2fQxodtCECJHY8YCdISAeXIuDCx2M7LotRMcE048AOwtMHYfoiRn6wO5HZ0I3xOAhNMBjnbbO-0k-RALeYU_QUhviAdD7cIAdeWfQA_fxmI5mGHEI8Tq5aNAz3fzeefL--PC2fk43r08v69UmNVkhh3ShaitspmRZEKEqUUnSMqvRiqzUVunM6FwvMouY1ZTXeqkLUau8aYxucmvVPBGnXBMDc6Smmnq0GA-VFNVx5OrvyJMlPVkYt1Ttwxi7qeH_-m_RqIHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel model-based approach for resistance estimation using rise time and sensorless position control of sub-millimetre shape memory alloy helical spring actuator</title><source>Access via SAGE</source><creator>Sreekanth, M ; Mathew, Abraham T ; Vijayakumar, R</creator><creatorcontrib>Sreekanth, M ; Mathew, Abraham T ; Vijayakumar, R</creatorcontrib><description>Shape memory alloy shows considerable strain during heating and cooling. This effect is due to its phase transformation with temperature. Due to this property, shape memory alloys can be deployed for physical actuation in place of conventional actuators in bio-medical and bio-mimicking robots. Sub-millimetre diameter shape memory alloy wires wound as helical springs are also used for this purpose. Due to their small size, it is difficult to use sensors for temperature or displacement measurements of shape memory alloy springs. This article attempts to demonstrate that the rise time of the current through a sub-millimetre diameter shape memory alloy helical spring is directly proportional to its displacement. To characterize the rise time–displacement hysteresis, a constant current drive with overcurrent protection is developed. The data generated are utilized to implement an open-loop sensorless control. A method to estimate the resistance from the rise time is proposed with which the temperature of the shape memory alloy during actuation can be obtained. The design avoids using an analogue-to-digital converter for the direct measurement of voltage and current for measuring the resistance variation in the shape memory alloy under actuation. This helps in the development of a new sensorless control using only the digital Input/Output pins of a microcontroller/microprocessor.</description><identifier>ISSN: 1045-389X</identifier><identifier>EISSN: 1530-8138</identifier><identifier>DOI: 10.1177/1045389X17730911</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Journal of intelligent material systems and structures, 2018-04, Vol.29 (6), p.1050-1064</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-63bd0d23198eea39a31e512bad0295d352c54562daa2be4b57580b34ffc5f4dd3</citedby><cites>FETCH-LOGICAL-c281t-63bd0d23198eea39a31e512bad0295d352c54562daa2be4b57580b34ffc5f4dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1045389X17730911$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1045389X17730911$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Sreekanth, M</creatorcontrib><creatorcontrib>Mathew, Abraham T</creatorcontrib><creatorcontrib>Vijayakumar, R</creatorcontrib><title>A novel model-based approach for resistance estimation using rise time and sensorless position control of sub-millimetre shape memory alloy helical spring actuator</title><title>Journal of intelligent material systems and structures</title><description>Shape memory alloy shows considerable strain during heating and cooling. This effect is due to its phase transformation with temperature. Due to this property, shape memory alloys can be deployed for physical actuation in place of conventional actuators in bio-medical and bio-mimicking robots. Sub-millimetre diameter shape memory alloy wires wound as helical springs are also used for this purpose. Due to their small size, it is difficult to use sensors for temperature or displacement measurements of shape memory alloy springs. This article attempts to demonstrate that the rise time of the current through a sub-millimetre diameter shape memory alloy helical spring is directly proportional to its displacement. To characterize the rise time–displacement hysteresis, a constant current drive with overcurrent protection is developed. The data generated are utilized to implement an open-loop sensorless control. A method to estimate the resistance from the rise time is proposed with which the temperature of the shape memory alloy during actuation can be obtained. The design avoids using an analogue-to-digital converter for the direct measurement of voltage and current for measuring the resistance variation in the shape memory alloy under actuation. This helps in the development of a new sensorless control using only the digital Input/Output pins of a microcontroller/microprocessor.</description><issn>1045-389X</issn><issn>1530-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UE1Lw0AQDaJgrd49zh-I7mazbXIsxS8oeFHwFia7k3bLJht2EqG_xz9qaj0JnuYx74PHS5JbKe6kXC7vpci1KsqPCStRSnmWzKRWIi2kKs4nPNHpkb9Mrpj3QshCCzVLvlbQhU_y0AZLPq2RyQL2fQxodtCECJHY8YCdISAeXIuDCx2M7LotRMcE048AOwtMHYfoiRn6wO5HZ0I3xOAhNMBjnbbO-0k-RALeYU_QUhviAdD7cIAdeWfQA_fxmI5mGHEI8Tq5aNAz3fzeefL--PC2fk43r08v69UmNVkhh3ShaitspmRZEKEqUUnSMqvRiqzUVunM6FwvMouY1ZTXeqkLUau8aYxucmvVPBGnXBMDc6Smmnq0GA-VFNVx5OrvyJMlPVkYt1Ttwxi7qeH_-m_RqIHA</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Sreekanth, M</creator><creator>Mathew, Abraham T</creator><creator>Vijayakumar, R</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201804</creationdate><title>A novel model-based approach for resistance estimation using rise time and sensorless position control of sub-millimetre shape memory alloy helical spring actuator</title><author>Sreekanth, M ; Mathew, Abraham T ; Vijayakumar, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-63bd0d23198eea39a31e512bad0295d352c54562daa2be4b57580b34ffc5f4dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sreekanth, M</creatorcontrib><creatorcontrib>Mathew, Abraham T</creatorcontrib><creatorcontrib>Vijayakumar, R</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of intelligent material systems and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sreekanth, M</au><au>Mathew, Abraham T</au><au>Vijayakumar, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel model-based approach for resistance estimation using rise time and sensorless position control of sub-millimetre shape memory alloy helical spring actuator</atitle><jtitle>Journal of intelligent material systems and structures</jtitle><date>2018-04</date><risdate>2018</risdate><volume>29</volume><issue>6</issue><spage>1050</spage><epage>1064</epage><pages>1050-1064</pages><issn>1045-389X</issn><eissn>1530-8138</eissn><abstract>Shape memory alloy shows considerable strain during heating and cooling. This effect is due to its phase transformation with temperature. Due to this property, shape memory alloys can be deployed for physical actuation in place of conventional actuators in bio-medical and bio-mimicking robots. Sub-millimetre diameter shape memory alloy wires wound as helical springs are also used for this purpose. Due to their small size, it is difficult to use sensors for temperature or displacement measurements of shape memory alloy springs. This article attempts to demonstrate that the rise time of the current through a sub-millimetre diameter shape memory alloy helical spring is directly proportional to its displacement. To characterize the rise time–displacement hysteresis, a constant current drive with overcurrent protection is developed. The data generated are utilized to implement an open-loop sensorless control. A method to estimate the resistance from the rise time is proposed with which the temperature of the shape memory alloy during actuation can be obtained. The design avoids using an analogue-to-digital converter for the direct measurement of voltage and current for measuring the resistance variation in the shape memory alloy under actuation. This helps in the development of a new sensorless control using only the digital Input/Output pins of a microcontroller/microprocessor.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1045389X17730911</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1045-389X
ispartof Journal of intelligent material systems and structures, 2018-04, Vol.29 (6), p.1050-1064
issn 1045-389X
1530-8138
language eng
recordid cdi_crossref_primary_10_1177_1045389X17730911
source Access via SAGE
title A novel model-based approach for resistance estimation using rise time and sensorless position control of sub-millimetre shape memory alloy helical spring actuator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20model-based%20approach%20for%20resistance%20estimation%20using%20rise%20time%20and%20sensorless%20position%20control%20of%20sub-millimetre%20shape%20memory%20alloy%20helical%20spring%20actuator&rft.jtitle=Journal%20of%20intelligent%20material%20systems%20and%20structures&rft.au=Sreekanth,%20M&rft.date=2018-04&rft.volume=29&rft.issue=6&rft.spage=1050&rft.epage=1064&rft.pages=1050-1064&rft.issn=1045-389X&rft.eissn=1530-8138&rft_id=info:doi/10.1177/1045389X17730911&rft_dat=%3Csage_cross%3E10.1177_1045389X17730911%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1045389X17730911&rfr_iscdi=true