Theoretical analysis and design for a multilayered ionic polymer metal composite actuator

Ionic polymer metal composites with a flexible large deformation have been used as biomimetic actuators and sensors in various fields. This work mainly focuses on the validation of the proposed theoretical prediction for various ionic polymer metal composite applications, such as a field needing a l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent material systems and structures 2018-02, Vol.29 (3), p.446-459
Hauptverfasser: Yang, Woosung, Choi, Sooho, Kim, Hyungjoo, Cho, Whang, Lee, Sungon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 459
container_issue 3
container_start_page 446
container_title Journal of intelligent material systems and structures
container_volume 29
creator Yang, Woosung
Choi, Sooho
Kim, Hyungjoo
Cho, Whang
Lee, Sungon
description Ionic polymer metal composites with a flexible large deformation have been used as biomimetic actuators and sensors in various fields. This work mainly focuses on the validation of the proposed theoretical prediction for various ionic polymer metal composite applications, such as a field needing a large resultant force, large tip deflection, or high response frequency. Such properties can be controlled by the number of layers and the thickness ratio of a multilayered ionic polymer metal composite actuator. Thus, we considered major design factors such as the number of layers and the thickness ratio in analysis of the proposed theoretical model and performed experiments to verify the static and dynamic electromechanical responses of multilayered (multimorph) ionic polymer metal composite structures acting as actuators. The relation between the polymer (Nafion) and electrode or substrate is represented by β. From this theoretical analysis, three properties were analyzed and predicted based on the Euler–Bernoulli beam theory, considering the dynamics of the ionic polymer metal composite, electrode, and bonding layers (substrate layers). The predicted results of a symmetric ionic polymer metal composite multimorph were compared with results of finite element analysis and experiments using ionic polymer metal composite multimorphs with one to five layers. Finally, this work examined how the number of layers and thickness affect the dynamic properties. This can contribute to predicting and optimally designing a multilayered ionic polymer metal composite actuator for satisfying a specific requirement.
doi_str_mv 10.1177/1045389X17711785
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_1045389X17711785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1045389X17711785</sage_id><sourcerecordid>10.1177_1045389X17711785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-83fd43e84c4835f0168f81b1364028bdc196812b5386e4da6e82432b6c9ac9723</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK7ePeYLVDNN2p0eZfHPwoKXFfRU0nS6ZmmbkmQP_fZmWU-Cp_kNb97Ae4zdg3gAWK0eQahCYvWZOO1YXLAFFFJkCBIvEyc5O-nX7CaEgxCAhZAL9rX7JucpWqN7rkfdz8GGBC1vKdj9yDvnuebDsY-21zN5arl1ozV8cv08kOcDxWQ1bphcsJG4NvGoo_O37KrTfaC737lkHy_Pu_Vbtn1_3ayftpnJEWKGsmuVJFRGoSw6ASV2CA3IUokcm9ZAVSLkTQpXkmp1SZgrmTelqbSpVrlcMnH-a7wLwVNXT94O2s81iPpUTf23mmTJzpag91Qf3NGn4OH_-x-d1GSL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theoretical analysis and design for a multilayered ionic polymer metal composite actuator</title><source>SAGE Complete</source><creator>Yang, Woosung ; Choi, Sooho ; Kim, Hyungjoo ; Cho, Whang ; Lee, Sungon</creator><creatorcontrib>Yang, Woosung ; Choi, Sooho ; Kim, Hyungjoo ; Cho, Whang ; Lee, Sungon</creatorcontrib><description>Ionic polymer metal composites with a flexible large deformation have been used as biomimetic actuators and sensors in various fields. This work mainly focuses on the validation of the proposed theoretical prediction for various ionic polymer metal composite applications, such as a field needing a large resultant force, large tip deflection, or high response frequency. Such properties can be controlled by the number of layers and the thickness ratio of a multilayered ionic polymer metal composite actuator. Thus, we considered major design factors such as the number of layers and the thickness ratio in analysis of the proposed theoretical model and performed experiments to verify the static and dynamic electromechanical responses of multilayered (multimorph) ionic polymer metal composite structures acting as actuators. The relation between the polymer (Nafion) and electrode or substrate is represented by β. From this theoretical analysis, three properties were analyzed and predicted based on the Euler–Bernoulli beam theory, considering the dynamics of the ionic polymer metal composite, electrode, and bonding layers (substrate layers). The predicted results of a symmetric ionic polymer metal composite multimorph were compared with results of finite element analysis and experiments using ionic polymer metal composite multimorphs with one to five layers. Finally, this work examined how the number of layers and thickness affect the dynamic properties. This can contribute to predicting and optimally designing a multilayered ionic polymer metal composite actuator for satisfying a specific requirement.</description><identifier>ISSN: 1045-389X</identifier><identifier>EISSN: 1530-8138</identifier><identifier>DOI: 10.1177/1045389X17711785</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Journal of intelligent material systems and structures, 2018-02, Vol.29 (3), p.446-459</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-83fd43e84c4835f0168f81b1364028bdc196812b5386e4da6e82432b6c9ac9723</citedby><cites>FETCH-LOGICAL-c281t-83fd43e84c4835f0168f81b1364028bdc196812b5386e4da6e82432b6c9ac9723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1045389X17711785$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1045389X17711785$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Yang, Woosung</creatorcontrib><creatorcontrib>Choi, Sooho</creatorcontrib><creatorcontrib>Kim, Hyungjoo</creatorcontrib><creatorcontrib>Cho, Whang</creatorcontrib><creatorcontrib>Lee, Sungon</creatorcontrib><title>Theoretical analysis and design for a multilayered ionic polymer metal composite actuator</title><title>Journal of intelligent material systems and structures</title><description>Ionic polymer metal composites with a flexible large deformation have been used as biomimetic actuators and sensors in various fields. This work mainly focuses on the validation of the proposed theoretical prediction for various ionic polymer metal composite applications, such as a field needing a large resultant force, large tip deflection, or high response frequency. Such properties can be controlled by the number of layers and the thickness ratio of a multilayered ionic polymer metal composite actuator. Thus, we considered major design factors such as the number of layers and the thickness ratio in analysis of the proposed theoretical model and performed experiments to verify the static and dynamic electromechanical responses of multilayered (multimorph) ionic polymer metal composite structures acting as actuators. The relation between the polymer (Nafion) and electrode or substrate is represented by β. From this theoretical analysis, three properties were analyzed and predicted based on the Euler–Bernoulli beam theory, considering the dynamics of the ionic polymer metal composite, electrode, and bonding layers (substrate layers). The predicted results of a symmetric ionic polymer metal composite multimorph were compared with results of finite element analysis and experiments using ionic polymer metal composite multimorphs with one to five layers. Finally, this work examined how the number of layers and thickness affect the dynamic properties. This can contribute to predicting and optimally designing a multilayered ionic polymer metal composite actuator for satisfying a specific requirement.</description><issn>1045-389X</issn><issn>1530-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK7ePeYLVDNN2p0eZfHPwoKXFfRU0nS6ZmmbkmQP_fZmWU-Cp_kNb97Ae4zdg3gAWK0eQahCYvWZOO1YXLAFFFJkCBIvEyc5O-nX7CaEgxCAhZAL9rX7JucpWqN7rkfdz8GGBC1vKdj9yDvnuebDsY-21zN5arl1ozV8cv08kOcDxWQ1bphcsJG4NvGoo_O37KrTfaC737lkHy_Pu_Vbtn1_3ayftpnJEWKGsmuVJFRGoSw6ASV2CA3IUokcm9ZAVSLkTQpXkmp1SZgrmTelqbSpVrlcMnH-a7wLwVNXT94O2s81iPpUTf23mmTJzpag91Qf3NGn4OH_-x-d1GSL</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Yang, Woosung</creator><creator>Choi, Sooho</creator><creator>Kim, Hyungjoo</creator><creator>Cho, Whang</creator><creator>Lee, Sungon</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201802</creationdate><title>Theoretical analysis and design for a multilayered ionic polymer metal composite actuator</title><author>Yang, Woosung ; Choi, Sooho ; Kim, Hyungjoo ; Cho, Whang ; Lee, Sungon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-83fd43e84c4835f0168f81b1364028bdc196812b5386e4da6e82432b6c9ac9723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Woosung</creatorcontrib><creatorcontrib>Choi, Sooho</creatorcontrib><creatorcontrib>Kim, Hyungjoo</creatorcontrib><creatorcontrib>Cho, Whang</creatorcontrib><creatorcontrib>Lee, Sungon</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of intelligent material systems and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Woosung</au><au>Choi, Sooho</au><au>Kim, Hyungjoo</au><au>Cho, Whang</au><au>Lee, Sungon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical analysis and design for a multilayered ionic polymer metal composite actuator</atitle><jtitle>Journal of intelligent material systems and structures</jtitle><date>2018-02</date><risdate>2018</risdate><volume>29</volume><issue>3</issue><spage>446</spage><epage>459</epage><pages>446-459</pages><issn>1045-389X</issn><eissn>1530-8138</eissn><abstract>Ionic polymer metal composites with a flexible large deformation have been used as biomimetic actuators and sensors in various fields. This work mainly focuses on the validation of the proposed theoretical prediction for various ionic polymer metal composite applications, such as a field needing a large resultant force, large tip deflection, or high response frequency. Such properties can be controlled by the number of layers and the thickness ratio of a multilayered ionic polymer metal composite actuator. Thus, we considered major design factors such as the number of layers and the thickness ratio in analysis of the proposed theoretical model and performed experiments to verify the static and dynamic electromechanical responses of multilayered (multimorph) ionic polymer metal composite structures acting as actuators. The relation between the polymer (Nafion) and electrode or substrate is represented by β. From this theoretical analysis, three properties were analyzed and predicted based on the Euler–Bernoulli beam theory, considering the dynamics of the ionic polymer metal composite, electrode, and bonding layers (substrate layers). The predicted results of a symmetric ionic polymer metal composite multimorph were compared with results of finite element analysis and experiments using ionic polymer metal composite multimorphs with one to five layers. Finally, this work examined how the number of layers and thickness affect the dynamic properties. This can contribute to predicting and optimally designing a multilayered ionic polymer metal composite actuator for satisfying a specific requirement.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1045389X17711785</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1045-389X
ispartof Journal of intelligent material systems and structures, 2018-02, Vol.29 (3), p.446-459
issn 1045-389X
1530-8138
language eng
recordid cdi_crossref_primary_10_1177_1045389X17711785
source SAGE Complete
title Theoretical analysis and design for a multilayered ionic polymer metal composite actuator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20analysis%20and%20design%20for%20a%20multilayered%20ionic%20polymer%20metal%20composite%20actuator&rft.jtitle=Journal%20of%20intelligent%20material%20systems%20and%20structures&rft.au=Yang,%20Woosung&rft.date=2018-02&rft.volume=29&rft.issue=3&rft.spage=446&rft.epage=459&rft.pages=446-459&rft.issn=1045-389X&rft.eissn=1530-8138&rft_id=info:doi/10.1177/1045389X17711785&rft_dat=%3Csage_cross%3E10.1177_1045389X17711785%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1045389X17711785&rfr_iscdi=true